1 School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key aboratory of Polymer Composite&Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510275, China; 2 Center for Neuron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 3 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China; 4 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China; 5 Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; 6 College of Science, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract The relationship between charge-density-wave (CDW) and superconductivity (SC), two vital physical phases in condensed matter physics, has always been the focus of scientists' research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIrAlTe (). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature () kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when . The value of normalized specific heat jump () for the highest sample CuIrAlTe was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states, we propose a phase diagram of vs. doping content.
Fund: H. X. Luo acknowledges the financial support by the National Natural Science Foundation of China (Grant No. 11922415), Guangdong Basic and Applied Basic Research Foundation, China (Grants No. 2019A1515011718), and the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001). Y. Zeng and D. X. Yao are supported by the National Natural Science Foundation of China (Grants No. 11974432) and the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203). D. Yan acknowledges the financial support by the National Key Laboratory Development Fund (No. 20190030). Y. H. Wang would like to acknowledge partial support by the National Key R&D Program of China (Grant No. 2017YFA0303000), National Natural Science Foundation of China (Grant No. 11827805), and Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01). M. Wang was supported by the National Natural Science Foundation of China (Grant Nos. 11904414 and 12174454) and the National Key R&D Program of China (Grant No. 2019YFA0705702).
Corresponding Authors:
Huixia Luo
E-mail: luohx7@mail.sysu.edu.cn
Cite this article:
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞) Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides 2022 Chin. Phys. B 31 037406
[1] Doan P, Gooch M, Tang Z J, Lorenz B, Möller A, Tapp J, Chu P C W and Guloy A M 2012 J. Am. Chem. Soc.134 16520 [2] Mososan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klilmczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys.2 544 [3] Shen B, Du F, Li R, Thamizhavel A, Smidman M, Nie Z Y, Luo S S, Le T, Hossain Z and Yuan H Q 2020 Phys. Rev. B101 144501 [4] Fang L, Wang Y, Zou P Y, Tang L, Xu Z, Chen H, Dong C, Shan L and Wen H H 2005 Phys. Rev. B72 014534 [5] Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L and Bi J Q 1987 Chin. Sci. Bull.32 412 [6] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Guo L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett.58 908 [7] Sasmal K, Lv B, Lorenz B, Guloy A M, Guloy F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett.101 107007 [8] Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C and Davis J C 2010 Science327 181 [9] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L and Zhao Z X 2008 Chin. Phys. Lett.25 2215 [10] Mao Y Y, Li J, Huang Y L, Yuan J, Li Z A, Chai K, Ma M W, Ni S L, Tian J P, Liu S B, Zhou H X, Zhou F, Li J Q, Zhang G M, Jin K, Dong X L and Zhao Z X 2018 Chin. Phys. Lett.35 057402 [11] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett.32 107401 [12] Dong X L, Jin K, Yuan J, Zhou F, Zhang G M and Zhan Z X 2018 Acta Phys. Sin.67 207410 (in Chinese) [13] Hong X C, Wang A F, Zhang Z, Pan J, He L P, Luo X G, Chen X H and Li S Y 2015 Chin. Phys. Lett.32 127403 [14] Joe Y I, Chen X M, Ghaemi P, Finkelstein K D, de la Pena G A, Gan Y, Lee J C T, Yuan S, Geck J, MacDougall G J, Chiang T C, Cooper S L, Fradkin E and Abbamonte P 2014 Nat. Phys.10 421 [15] Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H and Luo H X 2019 Supercond. Sci. Technol.32 085008 [16] Luo H X, Xie W W, Tao J, Inoue H, Gyenis A, Krizan J W, Yazdani A, Zhu Y M and Cava R J 2015 Proc. Natl. Acad. Sci. USA112 E1174 [17] Liu Y, Bao J J, Xu C Q, Jiao W H, Zhang H, Xu C L, Zhu Z, Yang H Y, Zhou Y H, Ren Z, Biswas P K, Ghosh S K, Yang Z, Ke X, Cao G H and Xu X F 2021 Phys. Rev. B104 104418 [18] Xing Y, Yang P, Ge J, Yan J J, Luo J W, Ji H R, Yang Z Y, Li Y J, Wang Z J, Liu Y Z, Yang F, Qiu P, Xi C Y, Tian M L, Liu Y, Lin X and Wang J 2021 Nano Lett.21 7486 [19] Xing Y, Zhao K, Shan P J, Zheng F P, Zhang Y W, Fu H L, Liu Y, Tian M L, Xi C Y, Liu H W, Feng J, Lin X, Ji S H, Chen X, Xue Q K and Wang J 2017 Nano Lett.17 6802 [20] Li X Q, Li Z L, Zhao J J and Wu X S 2020 Chin. Phys. B29 87402 [21] Simchi H 2020 Chin. Phys. B29 27401 [22] Qi Y P, Naumov P G, Ali M N, et al. 2016 Nat. Commun.7 11038 [23] Chen P, Pa W W, Chan Y H, Takayama A, Xu C Z, Karn A, Hasegawa S, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2017 Nat. Commun.8 516 [24] Zhou M H, Li X C and Dong C 2018 Supercond. Sci. Technol.31 065001 [25] Luo H X, Xie W W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y M and Cava R J 2016 Chem. Mater.28 1927 [26] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater.7 960 [27] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwase Y 2012 Science338 1193 [28] Kusmartseva A F, Sipos B, Berger H, Forró L and Tutiš E 2009 Phys. Rev. Lett.103 236401 [29] Fang L, Wang Y, Zou P Y, Tang L, Xu Z, Chen H, Dong C, Shan L and Wen H H 2005 Phys. Rev. B72 014534 [30] Hu W Z, Li G, Yan J, Wen H H, Wu G, Chen X H and Wang N L 2007 Phys. Rev. B76 045103 [31] Yan D, Wang S, Lin Y S, Wang G H, Zeng Y J, Boubeche M, He Y, Ma J, Wang Y H, Yao D X Luo H X 2020 J. Phys.:Condens. Matter32 025702 [32] Kiswandhi A, Brooks J S, Cao H B, Yan J Q, Mandrus D, Jiang Z and Zhou H D 2013 Phys. Rev. B87 121107(R) [33] Zeng J W, Liu E F, Fu Y J, et al. 2018 Nano Lett.18 1410 [34] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y M, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J 2008 Phys. Rev. B78 104520 [35] Pan X C, Chen X L, Liu H M, Feng Y Q, Wei Z X, Zhou Y H, Chi Z H, Pi L, Yen F, Song F Q, Wan X G, Yang Z R, Wang B G and Zhang Y H 2015 Nat. Commun.6 7805 [36] Yu Y J, Yang F Y, Lu X F, Yan Y J, Cho Y H, Ma L G, Niu X H, Kim S, Son Y W, Feng D L, Li S Y, Cheong S W, Chen X H and Zhang Y B 2015 Nat. Nanotech.10 270 [37] Luo J W, Li Y A, Zhang J W, Ji H R, Wang H, Shan J Y, Zhang G X, Cai C, Liu J, Wang Y, Zhang Y and Wang J 2020 Phys. Rev. B102 064502 [38] Li Y A, Gu Q Q, Chen C, Zhang J, Liu Q, Hu X Y, Liu J, Liu Y, Ling L S, Tian M L, Wang Y, Samarth N, Li S Y, Zhang T, Feng J and Wang J 2018 Proc. Natl. Acad. Sci. USA115 9503 [39] Yan D, Zeng Y J, Wang G H, Liu Y Y, Yin J J, Chang T R, Liu H, Wang M, Ma J, Jia S, Yao D X and Luo H X 2019 arXiv:1908.05438 [40] Yan D, Zeng L Y, Lin Y S, Yin J J, He Y, Zhang X, Huang M L, Shen B, Wang M, Wang Y H, Yao D X and Luo H X 2019 Phys. Rev. B100 174504 [41] Zeng L Y, Yan D, He Y Y, Boubeche M, Huang Y H, Wang X P and Luo H X 2021 J. Alloys Compd.885 160981 [42] Boubeche M, Yu J, Li C S, Wang H C, Zeng L Y, He Y Y, Wang X P, Su W Z, Wang M, Yao D X and Luo H X 2021 Chin. Phys. Lett.38 037401 [43] Boubeche M, Wang N N, Sun J P, Yang P T, Zeng L Y, Li Q Z, He Y Y, Luo S J, Cheng J G, Peng Y Y and Luo H X 2021 Supercond. Sci. Tech.34 115003 [44] Antal V, Kanuchova M, Šefčiková, M, Kovac J, Diko P, Eisterer M, Hörhager N, Zehetmayer M, Weber H W and Chaud X 2009 Supercond. Sci. Technol.22 105001 [45] Scavini B, Malavasi L and Mollica L 2004 Solid. State. Sci.6 1187 [46] Ansari I 2017 J. Mod. Mater.3 33 [47] Ginzburg V L 1955 Nuovo. Cim.2 1234 [48] McMillan W L 1968 Phys. Rev. B167 331 [49] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev.108 1175
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.