Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017901    DOI: 10.1088/1674-1056/ac20c4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure

Yarong Gu(古雅荣)1, Guicheng Shao(邵贵成)1, Zhumei Tian(田竹梅)1, Haixia Li(李海霞)1, Kai Wang(王凯)2,†, and Bo Zou(邹勃)2
1 Department of Electronics, Xinzhou Teachers University, Xinzhou 034000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Mechanoresponsive luminescent (MRL) materials have drawn extensive concern due to their potential applications in mechanical sensors, memory chips, and security inks; especially these possessing high emission efficiency. In this work, we found trans-stilbene crystal exhibited two different pressure-induced emission enhancement (PIEE) behaviors at different pressure areas. The structural characterizations combined with density functional theory calculation indicate that the first emission enhancement was due to the decrease of nonradiation transition by the weaken of energy exchange process between atoms and lattice. And the second emission enhancement was attributed to the strengthen of C-H...C interactions from the non-planarization comformation. The results regarding the mechanoresponsive behavior of trans-stilbene offered a deep insight into PIEE from the structural point of view, which will facilitate the design of and search for high-performance MRL materials.
Keywords:  pressure-induced emission enhancement      density functional theory      high pressure  
Received:  02 June 2021      Revised:  01 August 2021      Accepted manuscript online:  25 August 2021
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  42.70.-a (Optical materials)  
  91.60.Gf (High-pressure behavior)  
  82.33.Pt (Solid state chemistry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21725304, 11774120, and 11904010), the Chang Jiang Scholars Program of China (Grant No. T2016051), Changbai Mountain Scholars Program (Grant No. 2013007), the Science and Technology Innovation Program of Shanxi Province, China (Grant Nos. 2020L0540 and 2020L0544), and Scientific Research Fund of XinZhou Teachers University (Grant No. 2019KY04). We would thank Shanghai Synchrotron Radiation Facility (SSRF) for providing ADXRD experiments time of beamline 15U1.
Corresponding Authors:  Kai Wang     E-mail:  kaiwang@jlu.edu.cn

Cite this article: 

Yarong Gu(古雅荣), Guicheng Shao(邵贵成), Zhumei Tian(田竹梅), Haixia Li(李海霞), Kai Wang(王凯), and Bo Zou(邹勃) Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure 2022 Chin. Phys. B 31 017901

[1] Sagara Y, Yamane S, Mitani M, et al. 2016 Adv. Mater. 28 1073
[2] Luo J F, Tang B C, Gao C X, et al. 2005 Chin. Phys. B 14 1770
[3] Nagura K, Saito S, Yusa H, et al. 2013 J. Am. Chem. Soc. 135 10322
[4] Chi Z G, Zhang X Q, Xu B J, et al. 2012 Chem. Soc. Rev. 41 3878
[5] Yuan W, Cheng J J, Li X, et al. 2019 Angew. Chem. Int. Ed. Engl. 59 9940
[6] Dong Y J, Xu B, Zhang J B, et al. 2012 Angew. Chem. Int. Ed. Engl. 51 10782
[7] Yagai S, Okamura S, Nakano Y, Yamauchi M, et al. 2014 Nat. Commun. 5 4013
[8] Xu T F, Zhang S H, Legut D, et al. 2021 Chin. Phys. Lett. 38 056101
[9] Shi Y, Ma Z W, Zhao D L, et al. 2019 J. Am. Chem. Soc. 141 6504
[10] Li N, Gu Y R, Chen Y P, et al. 2019 J. Phys. Chem. C 123 6763
[11] Gu Y R, Liu H C, Qiu R, et al. 2019 J. Phys. Chem. Lett. 10 5557
[12] Zhang L, Liu C, Wang L R, et al. 2018 Angew. Chem. Int. Ed. Engl. 57 11213
[13] Gu Y R, Wang K, Dai Y X, et al. 2017 J. Phys. Chem. Lett. 8 4191
[14] Yuan H S, Wang K, Yang K, et al. 2014 J. Phys. Chem. Lett. 5 2968
[15] Liu H C, Gu Y R, Dai Y X, et al. 2020 J. Am. Chem. Soc. 142 1153
[16] Gu Y R, Li N, Shao G C, et al. 2020 J. Phys. Chem. Lett. 11 678
[17] Zhang J, Jin M L, Li X, et al. 2020 Chin. Phys. Lett. 37 087106
[18] Zhang S T, Dai Y X, Luo S Y, et al. 2017 Adv. Funct. Mater. 27 1602276
[19] Hoekstra A, Meertens P and Vos A 1975 Acta Cryst. B 31 2813
[20] Zhang Y L, Hao X Z, Huang Y P, et al. 2021 Chin. Phys. Lett. 38 026101
[21] Wang C, Liu Y X, Chen X, et al. 2020 Chin. Phys. Lett. 37 026201
[22] Mei J, Leung N L, Kwok R T, et al. 2015 Chem. Rev. 115 11718
[23] Zhang X X, Hu J T, Han H L, et al. 2021 Dyes and Pigments 193 109566
[24] Shi P J, Duan Y, Wei W, et al. 2018 J. Mater. Chem. C 6 2476
[25] Orlandi G, Garavelli M and Zerbetto F 2017 Phys. Chem. Chem. Phys. 19 25095
[26] Gierschner J, Mack H G, Lüer L, et al. 2002 J. Chem. Phys. 116 8596
[27] Takeuchi S and Tahara T 2000 Chem. Phys. Lett. 326 430
[28] Dreger Z A, Lucas H and Gupta Y M 2003 J. Phys. Chem. B 107 9268
[29] Wang C L, Dong H L, Li H X, et al. 2010 Cryst. Growth {& Des. 10 4155
[30] Ohigashi H, Shirotani I, Inokuchi H and Minomura S 1966 Mol. Cryst. 1 463
[31] Zhao X Y, Huang J H, Zhuo Z Y, et al. 2020 Chin. Phys. Lett. 37 044204
[32] Yan S L, Xie Z J, Chen J H, et al. 2017 Chin. Phys. Lett. 34 047304
[33] Xiong L, Li Q, Yang C F, et al. 2020 Chin. Phys. B 29 086401
[34] Zheng Q F, Li Q, Xue S D, et al. 2021 Chin. Phys. Lett. 38 026102
[35] Venkateswaran U D, Rao A M, Richter E, et al. 1999 Phys. Rev. B 59 10928
[36] Zheng Q F, Li Q, Xue S D, et al. 2021 Chin. Phys. Lett. 38 026102
[37] Meić Z G H 1978 Spectrochimica Acta Part A: Molecular Spectroscopy 34 101
[38] Chu B H, Zhao Y and Wang D H 2021 Chin. Phys. B 30 046101
[39] Li P S, Cui W R, Li R, et al. 2017 Chin. Phys. Lett. 34 076201
[40] Wood P A, McKinnon J J, Parsons S, et al. 2008 CrystEngComm 10 368
[41] Leung N L C, Xie N, Yuan W Z, et al. 2014 Chem. Eur. J. 20 15349
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
No Suggested Reading articles found!