Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107403    DOI: 10.1088/1674-1056/ac2488
Special Issue: SPECIAL TOPIC — Unconventional superconductivity
TOPICAL REVIEW—Unconventional superconductivity Prev   Next  

A review of some new perspectives on the theory of superconducting Sr2RuO4

Wen Huang(黄文)1,2,†
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  The nature of the Cooper pairing in the paradigmatic unconventional superconductor Sr2RuO4 is an outstanding puzzle in condensed matter physics. Despite the tremendous efforts made in the past twenty-seven years, neither the pairing symmetry nor the underlying pairing mechanism in this material has been understood with clear consensus. This is largely due to the lack of a superconducting order that is capable of interpreting in a coherent manner the numerous essential experimental observations. At this stage, it may be desirable to reexamine our existing theoretical descriptions of superconducting Sr2RuO4. This review focuses on several recent developments that may provide some clues for future study. We highlight three separate aspects: 1) any pairing in the Eu symmetry channel, with which the widely discussed chiral p-wave is associated, shall acquire a 3D structure due to spin-orbit entanglement; 2) if the reported Kerr effect is a superconductivity-induced intrinsic bulk response, the superconductivity must either exhibit a chiral character, or be complex mixtures of certain set of helical p-wave pairings; 3) when expressed in a multiorbital basis, the Cooper pairing could acquire numerous exotic forms that are inaccessible in single-orbital descriptions. The implications of each of these new perspectives are briefly discussed in connection with selected experimental phenomena.
Keywords:  Sr2RuO4      unconventional superconductivity      pairing symmetry      Kerr effect  
Received:  12 August 2021      Revised:  12 August 2021      Accepted manuscript online:  08 September 2021
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.20.-z (Theories and models of superconducting state)  
  74.70.Pq (Ruthenates)  
  74.25.F- (Transport properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904155), the Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), and a Shenzhen Science and Technology Program (Grant No. KQTD20200820113010023).
Corresponding Authors:  Wen Huang     E-mail:  huangw3@sustech.edu.cn

Cite this article: 

Wen Huang(黄文) A review of some new perspectives on the theory of superconducting Sr2RuO4 2021 Chin. Phys. B 30 107403

[1] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532
[2] Mackenzie A P, Haselwimmer R K W, Tyler A W, Lonzarich G G, Mori Y, Nishizaki S and Maeno Y 1998 Phys. Rev. Lett. 80 161
[3] Rice T M and Sigrist M 1995 J. Phys.: Condens. Matter 7 L643
[4] Baskaran G 1996 Physica B 223–224 490
[5] Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658
[6] Duffy J A, Hayden S M, Maeno Y, Mao Z, Kulda J and McIntyre G J 2000 Phys. Rev. Lett. 85 5412
[7] Nelson K D, Mao Z Q, Maeno Y and Liu Y 2004 Science 306 1151
[8] Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura H and Sigrist M 1998 Nature 394 558
[9] Xia J, Maeno Y, Beyersdorf P T, Fejer M M and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002
[10] Leggett A J 1975 Rev. Mod. Phys. 47 331
[11] Read N and Green D 2000 Phys. Rev. B 61 10267
[12] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[13] Mackenzie A P and Maeno Y 2003 Rev. Mod. Lett. 75 657
[14] Bergemann C, Julian S R, Mackenzie A P, NishiZaki S and Maeno Y 2000 Phys. Rev. Lett. 84 2662
[15] Bergemann C, Mackenzie A P, Julian S R, Forsythe D and Ohmichi E 2003 Advances in Physics 52 639
[16] Damascelli A, Lu D H, Shen K M, Armitage N P, Ronning F, Feng D L, Kim C, Shen Z X, Kimura T, Tokura Y, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 5194
[17] Haverkort M W, Elfimov I S, Tjeng L H, Sawatzky G A and Damascelli A 2008 Phys. Rev. Lett. 101 026406
[18] Veenstra C N, Zhu Z H, Raichle M, Ludbrook B M, Nicolaou A, Slomski B, Landolt G, Kittaka S, Maeno Y, Dil J H, Elfimov I S, Haverkort M W and Damascelli A 2014 Phys. Rev. Lett. 112 127002
[19] Ishida K, Mukuda H, Kitaoka Y, Mao Z Q, Mori Y and Maeno Y 2000 Phys. Rev. Lett. 84 5387
[20] Nishizaki S, Maeno Y and Mao Z Q 2000 J. Phys. Soc. Jpn. 69 572
[21] Bonalde I, Yanoff B D, Salamon M B, Van Harlingen D J, Chia E M E, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 4775
[22] Tanatar M A, Suzuki M, Nagai S, Mao Z Q, Maeno Y and Ishiguro T 2001 Phys. Rev. Lett. 86 2649
[23] Izawa K, Takahashi H, Yamaguchi H, Matsuda Y, Suzuki M, Sasaki T, Fukase T, Yoshida Y, Settai R and Onuki Y 2001 Phys. Rev. Lett. 86 2653
[24] Lupien C, MacFarlane W A, Proust C, Taillefer L, Mao Z Q and Maeno Y 2001 Phys. Rev. Lett. 86 5986
[25] Deguchi K, Mao Z Q, Yaguchi Y and Maeno Y 2004 Phys. Rev. Lett. 92 047002
[26] Firmo I A, Lederer S, Lupien C, Mackenzie A P, Davis J C and Kivelson S A 2013 Phys. Rev. B 88 134521
[27] Hassinger E, Bourgeois-Hope P, et al., 2017 Phys. Rev. X 7 011032
[28] Kirtley J R, Kallin C, Hicks C W, Kim E A, Liu Y, Moler K A, Maeno Y and Nelson K D 2007 Phys. Rev. B 76 014526
[29] Hicks C W, Kirtley J R, Lippman T M, Koshnick N C, Huber M E, Maeno Y, Yuhasz W M, Maple M B and Moler K A 2010 Phys. Rev. B 81 214501
[30] Curran P J, Bending S J, Desoky W M, Gibbs A S, Lee S L and Mackenzie A P 2014 Phys. Rev. B 89 144504
[31] Yonezawa S, Kajikawa T and Maeno Y J. Phys. Soc. Jpn. 83 083706
[32] Hicks C W, Brodsky D O, Yelland E A, et al. 2014 Science 344 283
[33] Steppke A, Zhao L, Barber M E, Scaffidi T, et al. 2017 Science 355 eaaf9398
[34] Li Y S, Kikugawa N, Sokolov D A, Jerzembeck F, Gibbs A S, Maeno Y, Hicks C W, Schmalian J, Nicklas M and Mackenzie A P 2021 Proc. Natl. Acad. Sci. USA 118 e2020492118
[35] Yonezawa S, Kajikawa T and Maeno Y 2013 Phys. Rev. Lett. 110 077003
[36] Kittaka S, Kasahara A, Sakakibara T, Shibata D, Yonezawa S, Maeno Y, Tenya K and Machida K 2014 Phys. Rev. B 90 220502
[37] Pustogow A, Luo Y, Chronister A, Su Y, Sokolov D A, Jerzembeck F, Mackenzie A P, Hicks C W, Kikugawa N, Raghu S, Bauer E D and Brown S E 2019 Nature 574 72
[38] Ishida K, Manago M and Maeno Y 2020 J. Phys. Soc. Jpn. 89 034712
[39] Petsch A N, Zhu M, Enderle M, Mao Z Q, Maeno Y, Mazin I I and Hayden S M 2020 Phys. Rev. Lett. 125 217004
[40] Sharma R, Edkins S D, Wang Z, Kostin A, Sow C, Maeno Y, Mackenzie A P, Davis J C S and Madhavan V 2020 Proc. Natl. Acad. Sci. USA 117 5222
[41] Grinenko V, Ghosh S, Sarkar R, Orain J, Nikitin A, Elender M, Das D, Guguchia Z, Brückner F, Barber M E, Park J, Kikugawa N, Sokolov D A, Bobowski J S, Miyoshi T, Maeno Y, Mackenzie A P, Luetkens H, Hicks C W and Klauss H 2021 Nat. Phys. 17 748
[42] Benhabib S, Lupien C, Paul I, Berges L, Dion M, Nardone M, Zitouni A, Mao Z Q, Maeno Y, Georges A, Taillefer L and Proust C 2021 Nat. Phys. 17 194
[43] Ghosh S, Shekhter A, Jerzembeck F, Kikugawa N, Sokolov D A, Brando M, Mackenzie A P, Hicks C W and Ramshaw B J 2021 Nat. Phys. 17 199
[44] Chronister A, Pustogow A, Kikugawa N, Sokolov D A, Jerzembeck F, Hicks C W, Mackenzie A P, Bauer E D and Brown S E 2021 Proc. Natl. Acad. Sci. USA 118 e2025313118
[45] Grinenko V, Das D, Gupta R, Zinkl B, Kikugawa N, Maeno Y, Hicks C W, Klauss H H, Sigrist M and Khasanov R 2021 Nat. Commun. 12 3920
[46] Maeno Y, Rice T M and Sigrist M 2001 Phys. Today 54 42
[47] Sigrist M 2005 Progress of Theoretical Physics Supplement 160 1
[48] Kallin C and Berlinsky A J 2009 J. Phys. Condens. Matter 21 164210
[49] Maeno Y, Kittaka S, Nomura T, Yonezawa S and Ishida K 2012 J. Phys. Soc. Jpn. 81 011009
[50] Kallin C 2012 Rep. Prog. Phys. 75 042501
[51] Liu Y and Mao Z Q 2015 Physica C 514 339
[52] Kallin C and Berlinsky A J 2016 Rep. Prog. Phys. 79 054502
[53] Mackenzie A P, Scaffidi T, Hicks C W and Maeno Y 2017 NPJ Quantum Materials 2 40
[54] Wysokiński K I 2019 Condensed Matter 4 47
[55] Leggett A J and Liu Y arXiv: 2010.15220
[56] Anwar M S and Robinson J W A 2021 Coatings 11 1110
[57] Huang W and Yao H 2018 Phys. Rev. Lett. 121 157002
[58] Zhang J L, Li Y, Huang W and Zhang F C 2020 Phys. Rev. B 102 180509(R)
[59] Huang W and Wang Z arXiv: 2102.03375 (Accepted for publication in Phys. Rev. Research.)
[60] Huang W, Zhou Y and Yao H 2019 Phys. Rev. B 100 134506
[61] Ramires A and Sigrist M 2019 Phys. Rev. B 100 104501
[62] Kaba S O and Sénéchal D 2019 Phys. Rev. B 100 214507
[63] Kidwingira F, Strand J D, van Harlingen D J and Maeno Y 2006 Science 314 1267
[64] Anwar M S, Nakamura T, Yonezawa S, Yakabe M, Ishiguro R, Takayanagi H and Maeno Y 2013 Sci. Rep. 3 2480
[65] Saitoh K, Kashiwaya S, Kashiwaya H, Mawatari Y and Asano Y, Tanaka Y and Maeno Y 2015 Phys. Rev. B 92 100504
[66] Goryo J 2008 Phys. Rev. B 78 060501(R)
[67] Lutchyn R M, NagornykPh and Yakovenko V M 2009 Phys. Rev. B 80 104508
[68] Taylor E and Kallin C 2012 Phys. Rev. Lett. 108 157001
[69] Wysokiński K I, Annett J F and Györffy B L 2012 Phys. Rev. Lett. 108 077004
[70] König E J and Levchenko A 2017 Phys. Rev. Lett. 118 027001
[71] Komendová L and Black-Schaffer A M 2017 Phys. Rev. Lett. 119 087001
[72] Li Y, Wang Z and Huang W 2020 Phys. Rev. Research 2 042027(R)
[73] Denys M D E and Brydon P M R 2021 Phys. Rev. B 103 094503
[74] Nie W, Huang W and Yao H 2020 Phys. Rev. B 102 054502
[75] Huang W, Taylor E and Kallin C 2014 Phys. Rev. B 90 224519
[76] Tada Y, Nie W and Oshikawa M 2015 Phys. Rev. Lett. 114 195301
[77] Agterberg D F, Rice T M and Sigrist M 1997 Phys. Rev. Lett. 78 3374
[78] Zhitomirsky M E and Rice T M 2001 Phys. Rev. Lett. 87 057001
[79] Takimoto T 2000 Phys. Rev. B 62 R14641(R)
[80] Nomura T and Yamada K 2000 J. Phys. Soc. Jpn. 69 3678
[81] Nomura T and Yamada K 2002 J. Phys. Soc. Jpn. 71 1993
[82] Eremin I, Manske D and Bennemann K H 2002 Phys. Rev. B 65 220502
[83] Raghu S, Kapitulnik A and Kivelson S A 2010 Phys. Rev. Lett. 105 136401
[84] Huo J W, Rice T M and Zhang F C 2013 Phys. Rev. Lett. 110 167003
[85] Wang Q H, Platt C, Yang Y, Honerkamp C, Zhang F C, Hanke W, Rice T M and Thomale R 2013 Europhys. Lett. 104 17013
[86] Scaffidi T, Romers J C and Simon S H 2014 Phys. Rev. B 89 220510(R)
[87] Tsuchiizu M, Yamakawa Y, Onari S, Ohno Y and Kontani H 2015 Phys. Rev. B 91 155103
[88] Zhang L D, Huang W, F Yang and Yao H 2018 Phys. Rev. B 97 060510(R)
[89] Wang W S, Zhang C C, Zhang F C and Wang Q H 2019 Phys. Rev. Lett. 122 027002
[90] Gingras O, Nourafkan R, Tremblay A M S and Còté M 2019 Phys. Rev. Lett. 123 217005
[91] Rømer A T, Scherer D D, Eremin I M, Hirschfeld P J and Andersen B M 2019 Phys. Rev. Lett. 123 247001
[92] Sigrist M and Ueda K 1991 Rev. Mod. Lett. 63 239
[93] Dai X, Fang Z, Zhou Y and Zhang F C 2008 Phys. Rev. Lett. 101 057008
[94] Zhou Y, Chen W Q and Zhang F C 2008 Phys. Rev. B 78 064514
[95] Wan Y and Wang Q H 2009 Europhys. Lett. 85 57007
[96] Puetter C M and Kee H Y 2012 Europhys. Lett. 98 27010
[97] Li Y and Huang W arXiv: 1909.03141
[98] Chen W and An J 2020 Phys. Rev. B 102 094501
[99] Suh H G, Menke H, Brydon P M R, Timm C, Ramires A and Agterberg D F 2020 Phys. Rev. Research 2 032023
[100] Lindquist A W and Kee H Y 2020 Phys. Rev. Research 2 032055
[101] Clepkens J, Lindquist A W, Liu X and Kee H Y arXiv: 2107.00047
[102] Ramires A and Sigrist M 2016 Phys. Rev. B 94 104501
[103] Wang Z, Wang X and Kallin C 2020 Phys. Rev. B 101 064507
[104] Kivelson S A, Yuan A C, Ramshaw B J and Thomale R 2020 npj Quantum Mater 5 43
[105] Scaffidi T arXiv: 2007.13769
[106] Willa R, Hecker M, Fernandes R M and Schmalian J 2021 Phys. Rev. B 104 024511
[107] Rømer A T, Hirschfeld P J and Andersen B M 2021 Phys. Rev. B 104 064507
[108] Zhang S J, Wang D and Wang Q H 2021 Phys. Rev. B 104 094504
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[3] Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4
Cong-Cong Zhang(张聪聪), Jin-Hua Sun(孙金华), Yang Yang(杨阳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2020, 29(6): 067401.
[4] Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice
Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平). Chin. Phys. B, 2019, 28(7): 077401.
[5] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[6] Superconductivity with peculiar upper critical fields in quasi-one-dimensional Cr-based pnictides
Guang-Han Cao(曹光旱), Zeng-Wei Zhu(朱增伟). Chin. Phys. B, 2018, 27(10): 107401.
[7] Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS
Yang Yang(杨阳), Shi-Quan Feng(冯世全), Yuan-Yuan Xiang(向圆圆), Hong-Yan Lu(路洪艳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2017, 26(12): 127401.
[8] Resonant magneto-optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids
Xia Zhang(张 霞), Lei Shi(石 磊), Jing Li(李晶), Yun-Jie Xia(夏云杰), Shi-Ming Zhou(周仕明). Chin. Phys. B, 2017, 26(11): 117801.
[9] Low voltage transflective blue-phase liquid crystal display with a non-uniform etching substrate
Jian Wang(王健), Jiang-Lin Mao(毛江林), Hao-Xiang Fan(范昊翔), Qiong-Hua Wang(王琼华). Chin. Phys. B, 2016, 25(9): 094223.
[10] Kerr effect and Kerr constant enhancement in vertically aligned deformed helix ferroelectric liquid crystals
Liangyu Shi, Abhishek Kumar Srivastava, Vladimir G Chigrinov, Hoi-Sing Kwok. Chin. Phys. B, 2016, 25(9): 094212.
[11] Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect
Miao-Ling Zhang(张苗玲), Jun Ye(叶军), Rui Liu(刘锐), Shu Mi(米菽), Yong Xie(谢勇), Hao-Liang Liu(刘郝亮), Chris Van Haesendonck, Zi-Yu Chen(陈子瑜). Chin. Phys. B, 2016, 25(4): 047503.
[12] Tuning the magnetic anisotropy of CoFeB grown on flexible substrates
Zhang Hao (张昊), Li Yuan-Yuan (李媛媛), Yang Mei-Yin (杨美音), Zhang Bao (张保), Yang Guang (杨光), Wang Shou-Guo (王守国), Wang Kai-You (王开友). Chin. Phys. B, 2015, 24(7): 077501.
[13] Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals
Liang Hong (梁红), Liu Huan (刘欢), Zhang Qiang (张强), Fu Shu-Fang (付淑芳), Zhou Sheng (周胜), Wang Xuan-Zhang (王选章). Chin. Phys. B, 2015, 24(6): 067807.
[14] Role of the aperture in Z-scan experiments: A parametric study
M. R. Rashidian Vaziri. Chin. Phys. B, 2015, 24(11): 114206.
[15] Multi-component optical azimuthons of four-wave mixing
Wang Rui-Min (王瑞敏), Wang Xing-Peng (王兴鹏), Wu Zhen-Kun (吴振坤), Yao Xin (姚鑫), Zhang Yi-Qi (张贻齐), Zhang Yan-Peng (张彦鹏). Chin. Phys. B, 2014, 23(5): 054209.
No Suggested Reading articles found!