Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034207    DOI: 10.1088/1674-1056/ac192b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate

Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞)
Institute of Ultrashort Pulsed Laser and Application, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Abstract  We report on a compact, stable, all-fiberized narrow-linewidth (0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μ is used to raise the threshold of the stimulated Brillouin scattering (SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate (LBO) crystal and beta-barium borate (BBO) crystal for realizing the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we achieve 17 μJ (1.73 W) and 0.66 μJ (66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.
Keywords:  nanosecond      all-fiber amplifier      narrow-linewidth      ultraviolet beam generation      tunable pulse width and repetition rate  
Received:  12 June 2021      Revised:  20 July 2021      Accepted manuscript online:  30 July 2021
PACS:  42.55.-f (Lasers)  
  42.55.Wd (Fiber lasers)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the Key Program of Beijing Municipal Natural Science Foundation, China (Grant No. KZ201910005006), the National Nature Science Foundation of China (Grant No. 62005004), the Natural Science Foundation of Beijing Municipality, China (Grant No. 4204091), and the National Science Foundation for Postdoctor Scientists of China (Grant No. 212423).
Corresponding Authors:  Ping-Xue Li     E-mail:  pxli@bjut.edu.cn

Cite this article: 

Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞) The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate 2022 Chin. Phys. B 31 034207

[1] Case A T, Tan D, Stickel R E and Mastromarino J 2006 Appl. Opt. 45 2306
[2] Ostermeyer M, Kappe P, Menzel R and Wulfmeyer V 2005 Appl. Opt. 44 582
[3] Christopher D B and Fabio Di Teodoro 2007 Opt. Commun. 280 040
[4] Zhang X, Yang F, Feng Z T, Zhao J J, Wei F, Cai H W and Qu R H 2019 Chin. Phys. B 28 074209
[5] Kojima T, Konno S, Fujikawa S, Yasui K and Okada Y 2000 Opt. Lett. 25 058
[6] Wang G L, Geng A, Bo Y, Li H Q, Sun Z P, Bi Y, Cui D F, Xu Z Y, Yuan X, Wang X Q, Shen G Q and Shen D Z 2006 Opt. Commun. 259 061
[7] Liu Q, Yan X P, Fu X, Gong M and Wang D S 2009 Laser Phys. Lett. 6 10122
[8] Liu Q, Yan X P, Gong M L, Liu H, Zhang G and Ye N 2011 Opt. Lett. 36 2653
[9] Wang L R, Wang G L, Zhang X, Liu L J and Chen C T 2012 Chin. Phys. Lett. 29 064203
[10] Wang L R, Zhai N X, Liu L J, Wang X Y, Wang G L, Zhu Y and Chen C T 2014 Opt. Express 22 027086
[11] Goldberg L, Cole B, McIntosh C, King V, Hays A D and Chinn S R 2016 Opt. Express 24 017397
[12] Hong H L, Liu Q, Huang L and Gong M L 2013 Opt. Express 21 7285
[13] Nikitin D G, Byalkovskiy O A, Vershinin O I, Puyu P V and Tyrtyshnyy V A 2016 Opt. Lett. 41 1660
[14] Yan X, Liu Q, Chen H, Fu X, Gong M and Wang D 2010 Laser Phys. Lett. 7 4131
[15] He J, Lin D, Xu L, Beresna M, Zervas M N, Alam S U and Brambilla G 2018 Opt. Express 26 6554
[16] Delen X, Deyra L, Benoit A, Hanna M, Balembois F, Cocquelin B, Sangla D, Salin F, Didierjean J and Georges P 2013 Opt. Lett. 38 995
[17] Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J and Kracht D 2019 Opt. Express 27 028523
[18] Wang X L, Zhou P, Leng J Y, Du W B and Xu X J 2013 Chin. Phys. B 22 044205
[19] Xuan H W, Qu C, Ito S and Kobayashi Y 2017 Opt. Lett. 42 3133
[20] Kumar S C, Casals J C, Bautista E S, Devi K and Ebrahim Z M 2015 Opt. Lett. 40 2397
[21] Cui Y L, Tang N, Zhou Z Y, Li Z X and Wang Z F 2019 Opt. Fiber Technol. 52 101938
[22] Dilley C E, Stephen M A and Savage-Leuchs M P 2007 Opt. Express 15 14389
[23] Zhang W, Wei Z, Wang Y B and Jin G Y 2016 Chin. Phys. Lett. 33 014205
[24] Simon P and Ihlemann J 1997 Appl. Surf. Sci. 96 00615
[25] Chen T C and Darling R B 2005 Journal of Materials Processing Technology 169 214
[26] Chen G, Xu Z and Sadler B M 2010 Opt. Express 18 010500
[27] Zhang K J, Liu L, Zeng Q W, Gao T C, Hu S and Chen M 2019 Acta Phys. Sin. 68 194207 (in Chinese)
[28] Shatalov M, Zhang J P, Chitnis A S, Adivarahan V and Khan M A 2002 IEEE 8 999185
[29] Yang M, Li P X, Wang D X, Yu K X, Dong X Y, Wang T T, Yao C F and Yang W X 2020 Chin. Phys. B 29 114206
[30] Guo B, Wang S H, Wu Z X, Wang Z X, Wang H D, Huang H, Zhang F, Ge Y Q and Zhang H 2018 Opt. Express 26 22750
[31] Song Y F, Wang Z H, Wang C, Panajotov K and Zhang H 2020 Appl. Phys. Rev. 2 024001
[32] Song Y F, Wang Z H, Wang C, Panajotov K and Zhang H 2020 Adv. Photon 2 024001
[33] Robadey J, Gourgon C, Gaud E, et al. 1999 Electron. Lett. 35 2119
[1] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[2] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[3] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[4] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
[5] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[6] 2-μm mode-locked nanosecond fiber laser based on MoS2 saturable absorber
Xiao-Fa Wang(王小发), Xiao-Ling Peng(彭晓玲), Qiu-Xia Jiang(姜秋霞), Xiao-Hui Gu(顾小辉), Jun-Hong Zhang(张俊红), Xue-Feng Mao(毛雪峰), Su-Zhen Yuan(袁素贞). Chin. Phys. B, 2017, 26(11): 114205.
[7] High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz
Zhi-Guo Lv(吕志国), Hao Teng(滕浩), Li-Na Wang(王立娜), Jun-Li Wang(王军利), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094208.
[8] Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation
Kang Chen(陈康) and Hua Liang(梁华). Chin. Phys. B, 2016, 25(2): 024703.
[9] Numerical analyses on optical limiting performances of chloroindium phthalocyanines with different substituent positions
Yu-Jin Zhang(张玉瑾), Xing-Zhe Li(李兴哲), Ji-Cai Liu(刘纪彩), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2016, 25(1): 013302.
[10] A comparison of single shot nanosecond and femtosecond polarization-resolved laser-induced breakdown spectroscopy of Al
Nakimana Agnes, Tao Hai-Yan (陶海岩), Hao Zuo-Qiang (郝作强), Sun Chang-Kai (孙长凯), Gao Xun (高勋), Lin Jing-Quan (林景全). Chin. Phys. B, 2013, 22(1): 014209.
[11] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
[12] The effect of polymer type on electric breakdown strength on a nanosecond time scale
Zhao Liang(赵亮), Su Jian-Cang(苏建仓), Pan Ya-Feng(潘亚峰), and Zhang Xi-Bo(张喜波) . Chin. Phys. B, 2012, 21(3): 033102.
[13] Measurement and control for a repetitive nanosecond-pulse breakdown experiment in polymer films
Shao Tao(邵涛), Zhang Cheng(章程), Long Kai-Hua(龙凯华), Wang Jue(王珏), Zhang Dong-Dong(张东东), and Yan Ping(严萍). Chin. Phys. B, 2010, 19(4): 040601.
[14] Numerical simulation of super-short pulsed discharge in Helium with particle-in-cell Monte--Carlo collisions technique
Shi Feng(石锋), Zhang Li-Li(张莉丽), and Wang De-Zhen(王德真). Chin. Phys. B, 2009, 18(3): 1177-1180.
[15] Experimental study of polarity dependence in repetitive nanosecond-pulse breakdown
Shao Tao(邵涛), Sun Guang-Sheng(孙广生), Yan Ping(严萍), Wang Jue(王珏), Yuan Wei-Qun(袁伟群), and Zhang Shi-Chang(张适昌). Chin. Phys. B, 2007, 16(3): 778-783.
No Suggested Reading articles found!