The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪)†, Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞)
Institute of Ultrashort Pulsed Laser and Application, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Abstract We report on a compact, stable, all-fiberized narrow-linewidth (0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μ is used to raise the threshold of the stimulated Brillouin scattering (SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate (LBO) crystal and beta-barium borate (BBO) crystal for realizing the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we achieve 17 μJ (1.73 W) and 0.66 μJ (66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
Fund: Project supported by the Key Program of Beijing Municipal Natural Science Foundation, China (Grant No. KZ201910005006), the National Nature Science Foundation of China (Grant No. 62005004), the Natural Science Foundation of Beijing Municipality, China (Grant No. 4204091), and the National Science Foundation for Postdoctor Scientists of China (Grant No. 212423).
Corresponding Authors:
Ping-Xue Li
E-mail: pxli@bjut.edu.cn
Cite this article:
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞) The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate 2022 Chin. Phys. B 31 034207
[1] Case A T, Tan D, Stickel R E and Mastromarino J 2006 Appl. Opt.45 2306 [2] Ostermeyer M, Kappe P, Menzel R and Wulfmeyer V 2005 Appl. Opt.44 582 [3] Christopher D B and Fabio Di Teodoro 2007 Opt. Commun.280 040 [4] Zhang X, Yang F, Feng Z T, Zhao J J, Wei F, Cai H W and Qu R H 2019 Chin. Phys. B28 074209 [5] Kojima T, Konno S, Fujikawa S, Yasui K and Okada Y 2000 Opt. Lett.25 058 [6] Wang G L, Geng A, Bo Y, Li H Q, Sun Z P, Bi Y, Cui D F, Xu Z Y, Yuan X, Wang X Q, Shen G Q and Shen D Z 2006 Opt. Commun.259 061 [7] Liu Q, Yan X P, Fu X, Gong M and Wang D S 2009 Laser Phys. Lett.6 10122 [8] Liu Q, Yan X P, Gong M L, Liu H, Zhang G and Ye N 2011 Opt. Lett.36 2653 [9] Wang L R, Wang G L, Zhang X, Liu L J and Chen C T 2012 Chin. Phys. Lett.29 064203 [10] Wang L R, Zhai N X, Liu L J, Wang X Y, Wang G L, Zhu Y and Chen C T 2014 Opt. Express22 027086 [11] Goldberg L, Cole B, McIntosh C, King V, Hays A D and Chinn S R 2016 Opt. Express24 017397 [12] Hong H L, Liu Q, Huang L and Gong M L 2013 Opt. Express21 7285 [13] Nikitin D G, Byalkovskiy O A, Vershinin O I, Puyu P V and Tyrtyshnyy V A 2016 Opt. Lett.41 1660 [14] Yan X, Liu Q, Chen H, Fu X, Gong M and Wang D 2010 Laser Phys. Lett.7 4131 [15] He J, Lin D, Xu L, Beresna M, Zervas M N, Alam S U and Brambilla G 2018 Opt. Express26 6554 [16] Delen X, Deyra L, Benoit A, Hanna M, Balembois F, Cocquelin B, Sangla D, Salin F, Didierjean J and Georges P 2013 Opt. Lett.38 995 [17] Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J and Kracht D 2019 Opt. Express27 028523 [18] Wang X L, Zhou P, Leng J Y, Du W B and Xu X J 2013 Chin. Phys. B22 044205 [19] Xuan H W, Qu C, Ito S and Kobayashi Y 2017 Opt. Lett.42 3133 [20] Kumar S C, Casals J C, Bautista E S, Devi K and Ebrahim Z M 2015 Opt. Lett.40 2397 [21] Cui Y L, Tang N, Zhou Z Y, Li Z X and Wang Z F 2019 Opt. Fiber Technol.52 101938 [22] Dilley C E, Stephen M A and Savage-Leuchs M P 2007 Opt. Express15 14389 [23] Zhang W, Wei Z, Wang Y B and Jin G Y 2016 Chin. Phys. Lett.33 014205 [24] Simon P and Ihlemann J 1997 Appl. Surf. Sci.96 00615 [25] Chen T C and Darling R B 2005 Journal of Materials Processing Technology169 214 [26] Chen G, Xu Z and Sadler B M 2010 Opt. Express18 010500 [27] Zhang K J, Liu L, Zeng Q W, Gao T C, Hu S and Chen M 2019 Acta Phys. Sin.68 194207 (in Chinese) [28] Shatalov M, Zhang J P, Chitnis A S, Adivarahan V and Khan M A 2002 IEEE8 999185 [29] Yang M, Li P X, Wang D X, Yu K X, Dong X Y, Wang T T, Yao C F and Yang W X 2020 Chin. Phys. B29 114206 [30] Guo B, Wang S H, Wu Z X, Wang Z X, Wang H D, Huang H, Zhang F, Ge Y Q and Zhang H 2018 Opt. Express26 22750 [31] Song Y F, Wang Z H, Wang C, Panajotov K and Zhang H 2020 Appl. Phys. Rev.2 024001 [32] Song Y F, Wang Z H, Wang C, Panajotov K and Zhang H 2020 Adv. Photon2 024001 [33] Robadey J, Gourgon C, Gaud E, et al. 1999 Electron. Lett.35 2119
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.