|
|
Digraph states and their neural network representations |
Ying Yang(杨莹)1 and Huaixin Cao(曹怀信)2,† |
1 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China; 2 School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract With the rapid development of machine learning, artificial neural networks provide a powerful tool to represent or approximate many-body quantum states. It was proved that every graph state can be generated by a neural network. Here, we introduce digraph states and explore their neural network representations (NNRs). Based on some discussions about digraph states and neural network quantum states (NNQSs), we construct explicitly an NNR for any digraph state, implying every digraph state is an NNQS. The obtained results will provide a theoretical foundation for solving the quantum many-body problem with machine learning method whenever the wave-function is known as an unknown digraph state or it can be approximated by digraph states.
|
Received: 11 August 2021
Revised: 01 December 2021
Accepted manuscript online: 05 December 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
03.65.Wj
|
(State reconstruction, quantum tomography)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12001480 and 11871318), the Applied Basic Research Program of Shanxi Province (Grant Nos. 201901D211461 and 201901D211462), the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0554), the Excellent Doctoral Research Project of Shanxi Province (Grant No. QZX-2020001), and the PhD Start-up Project of Yuncheng University (Grant No. YQ-2019021). |
Corresponding Authors:
Huaixin Cao
E-mail: caohx@snnu.edu.cn
|
Cite this article:
Ying Yang(杨莹) and Huaixin Cao(曹怀信) Digraph states and their neural network representations 2022 Chin. Phys. B 31 060303
|
[1] Li Y, Ye X J and Chen J L 2016 Chin. Phys. Lett. 33 080301 [2] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 010303 [3] Du L, Wang Y L, Liang G H, Kang G Z and Zong H S 2016 Chin. Phys. Lett. 33 030301 [4] Sun J and Lu S F 2020 Chin. Phys. B 29 100303 [5] Klein A and Zemach C 1957 Phys. Rev. 108 126 [6] Schweigler T, Kasper V, Erne S, Mazets I, Rauer B, Cataldini F, Langen T, Gasenzer T, Berges J and Schmiedmayer J 2017 Nature 545 323 [7] Hodgman S S, Khakimov R I, Lewis-Swan R J, Truscott A G and Kheruntsyan K V 2017 Phys. Rev. Lett. 118 240402 [8] Schollwöck U 2011 Ann. Phys. 326 96 [9] Kolmogorov A N 1957 Dokl. Akad. Nauk SSSR 114 953 [10] Schuch N, Wolf M M, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 100 040501 [11] Ceperley D and Alder B 1986 Science 231 555 [12] Schuch N, Wolf M M, Verstraete F and Cirac J I 2007 Phys. Rev. Lett. 98 140506 [13] Verstraete F, Wolf M M, Garcia D P and Cirac J I 2006 Phys. Rev. Lett. 96 220601 [14] Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J and Sugar R L 1990 Phys. Rev. B 41 9301 [15] Cybenko G 1989 Math. Control Signal Syst. 2 303 [16] Funahashi K 1989 Neural Networks 2 183 [17] Hornik K, Stinchcombe M and White H 1989 Neural Networks 2 359 [18] Hornik K 1991 Neural Networks 4 251 [19] Kolmogorov A N 1957 Dokl. Akad. Nauk SSSR 114 953 [20] Roux N L and Bengio Y 2008 Neural Comput. 20 1631 [21] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436 [22] Cao L Z, Wang P J, Sai L W, Fu J and Duan X M 2020 Chin. Phys. B 29 117304 [23] Hinton G E and Salakhutdinov R R 2006 Science 313 504 [24] Salakhutdinov R R, Mnih A and Hinton G 2007 ICML 24 791 [25] Larochelle H and Bengio Y 2008 ICML 25 536 [26] Amin M H, Andriyash E, Rolfe J, Kulchytskyy B and Melko R 2016 Phys. Rev. X 8 021050 [27] Lu S, Gao X and Duan L M 2019 Phys. Rev. B 99 155136 [28] Sarma S D, Deng D L and Duan L M 2019 Phys. Today 72 48 [29] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Maranto L V and Zdeborová L 2019 Rev. Mod. Phys. 91 045002 [30] Carleo G and Troyer M 2017 Science 355 602 [31] Chen J, Cheng S, Xie H D, Wang L and Xiang T 2018 Phys. Rev. B 97 085104 [32] Robeva E and Seigal A 2019 Inf. Inference 8 273 [33] Clark S R 2018 J. Phys. A: Math. Theor. 51 135301 [34] Huang Y C and Moore J E 2021 Phys. Rev. Lett. 127 170601 [35] Lei S J, Bai D, Ren Z Z and Lyu M J 2021 Chin. Phys. Lett. 38 051101 [36] Yin Q, Xiang G Y, Li C F and Guo G C 2017 Chin. Phys. Lett. 34 030301 [37] Yang Y, Zhang C Y and Cao H X 2019 Entropy 21 82 [38] Nomura Y, Darmawan A S, Yamaji Y and Imada M 2017 Phys. Rev. B 96 205152 [39] Deng D L, Li X P and Sarma S D 2017 Phys. Rev. B 96 195145 [40] Rocchetto A, Grant E, Strelchuk S, Carleo G and Severini S 2018 npj Quantum Inf. 4 28 [41] Glasser I, Pancotti N, August M, Rodriguez I D and Cirac J I 2017 Phys. Rev. X 8 011006 [42] Kaubruegger R, Pastori L and Budich J C 2018 Phys. Rev. B 97 195136 [43] Cai Z 2018 Phys. Rev. B 97 035116 [44] Saito H and Kato M 2017 J. Phys. Soc. Jpn. 87 014001 [45] Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C and Guo G P 2019 Adv. Quantum Technol. 2 1800077 [46] Rao W J 2020 Chin. Phys. Lett. 37 080501 [47] Yang Y, Cao H X and Zhang Z J 2020 Sci. China-Phys. Mech. Astron. 63 210312 [48] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 [49] Schlingemann D and Werner R F 2002 Phys. Rev. A 65 012308 [50] Mandel O, Greiner M, Widera A, Rom T, Haensch T W and Bloch I 2003 Nature 425 937 [51] Walther P, Resch J K, Rudolph T, Schenck E and Weinfurter H 2005 Nature 434 169 [52] Gao X and Duan L M 2017 Nat. Commun. 8 662 [53] Kottos T and Smilansky U 1997 Phys. Rev. Lett. 79 4794 [54] Kottos T and Smilansky U 1999 Ann. Phys. N.Y. 274 76 [55] Tanner G 2000 J. Phys. A: Math. Gen. 33 3567 [56] Tanner G 2001 J. Phys. A: Math. Gen. 34 8485 [57] Pakoński P, Życzkowski K and Kuś M 2001 J. Phys. A: Math. Gen. 34 9303 [58] Chang C T and Hwang H C 1992 Ind. Eng. Chem. Res. 31 1490 [59] Palmer C and Chung P W H 2000 Ind. Eng. Chem. Res. 39 2548 [60] Bhushan M and Rengaswamy R 2000 Ind. Eng. Chem. Res. 39 999 [61] Deng D L, Li X P and Sarma S D 2017 Phys. Rev. B 96 195145 [62] Kay E 1977 J. Oper. Res. Soc. 28 237 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|