Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060303    DOI: 10.1088/1674-1056/ac401d
GENERAL Prev   Next  

Digraph states and their neural network representations

Ying Yang(杨莹)1 and Huaixin Cao(曹怀信)2,†
1 School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China;
2 School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, China
Abstract  With the rapid development of machine learning, artificial neural networks provide a powerful tool to represent or approximate many-body quantum states. It was proved that every graph state can be generated by a neural network. Here, we introduce digraph states and explore their neural network representations (NNRs). Based on some discussions about digraph states and neural network quantum states (NNQSs), we construct explicitly an NNR for any digraph state, implying every digraph state is an NNQS. The obtained results will provide a theoretical foundation for solving the quantum many-body problem with machine learning method whenever the wave-function is known as an unknown digraph state or it can be approximated by digraph states.
Keywords:  digraph state      neural network      quantum state      representation  
Received:  11 August 2021      Revised:  01 December 2021      Accepted manuscript online:  05 December 2021
PACS:  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.65.Wj (State reconstruction, quantum tomography)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12001480 and 11871318), the Applied Basic Research Program of Shanxi Province (Grant Nos. 201901D211461 and 201901D211462), the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0554), the Excellent Doctoral Research Project of Shanxi Province (Grant No. QZX-2020001), and the PhD Start-up Project of Yuncheng University (Grant No. YQ-2019021).
Corresponding Authors:  Huaixin Cao     E-mail:  caohx@snnu.edu.cn

Cite this article: 

Ying Yang(杨莹) and Huaixin Cao(曹怀信) Digraph states and their neural network representations 2022 Chin. Phys. B 31 060303

[1] Li Y, Ye X J and Chen J L 2016 Chin. Phys. Lett. 33 080301
[2] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 010303
[3] Du L, Wang Y L, Liang G H, Kang G Z and Zong H S 2016 Chin. Phys. Lett. 33 030301
[4] Sun J and Lu S F 2020 Chin. Phys. B 29 100303
[5] Klein A and Zemach C 1957 Phys. Rev. 108 126
[6] Schweigler T, Kasper V, Erne S, Mazets I, Rauer B, Cataldini F, Langen T, Gasenzer T, Berges J and Schmiedmayer J 2017 Nature 545 323
[7] Hodgman S S, Khakimov R I, Lewis-Swan R J, Truscott A G and Kheruntsyan K V 2017 Phys. Rev. Lett. 118 240402
[8] Schollwöck U 2011 Ann. Phys. 326 96
[9] Kolmogorov A N 1957 Dokl. Akad. Nauk SSSR 114 953
[10] Schuch N, Wolf M M, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 100 040501
[11] Ceperley D and Alder B 1986 Science 231 555
[12] Schuch N, Wolf M M, Verstraete F and Cirac J I 2007 Phys. Rev. Lett. 98 140506
[13] Verstraete F, Wolf M M, Garcia D P and Cirac J I 2006 Phys. Rev. Lett. 96 220601
[14] Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J and Sugar R L 1990 Phys. Rev. B 41 9301
[15] Cybenko G 1989 Math. Control Signal Syst. 2 303
[16] Funahashi K 1989 Neural Networks 2 183
[17] Hornik K, Stinchcombe M and White H 1989 Neural Networks 2 359
[18] Hornik K 1991 Neural Networks 4 251
[19] Kolmogorov A N 1957 Dokl. Akad. Nauk SSSR 114 953
[20] Roux N L and Bengio Y 2008 Neural Comput. 20 1631
[21] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[22] Cao L Z, Wang P J, Sai L W, Fu J and Duan X M 2020 Chin. Phys. B 29 117304
[23] Hinton G E and Salakhutdinov R R 2006 Science 313 504
[24] Salakhutdinov R R, Mnih A and Hinton G 2007 ICML 24 791
[25] Larochelle H and Bengio Y 2008 ICML 25 536
[26] Amin M H, Andriyash E, Rolfe J, Kulchytskyy B and Melko R 2016 Phys. Rev. X 8 021050
[27] Lu S, Gao X and Duan L M 2019 Phys. Rev. B 99 155136
[28] Sarma S D, Deng D L and Duan L M 2019 Phys. Today 72 48
[29] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Maranto L V and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[30] Carleo G and Troyer M 2017 Science 355 602
[31] Chen J, Cheng S, Xie H D, Wang L and Xiang T 2018 Phys. Rev. B 97 085104
[32] Robeva E and Seigal A 2019 Inf. Inference 8 273
[33] Clark S R 2018 J. Phys. A: Math. Theor. 51 135301
[34] Huang Y C and Moore J E 2021 Phys. Rev. Lett. 127 170601
[35] Lei S J, Bai D, Ren Z Z and Lyu M J 2021 Chin. Phys. Lett. 38 051101
[36] Yin Q, Xiang G Y, Li C F and Guo G C 2017 Chin. Phys. Lett. 34 030301
[37] Yang Y, Zhang C Y and Cao H X 2019 Entropy 21 82
[38] Nomura Y, Darmawan A S, Yamaji Y and Imada M 2017 Phys. Rev. B 96 205152
[39] Deng D L, Li X P and Sarma S D 2017 Phys. Rev. B 96 195145
[40] Rocchetto A, Grant E, Strelchuk S, Carleo G and Severini S 2018 npj Quantum Inf. 4 28
[41] Glasser I, Pancotti N, August M, Rodriguez I D and Cirac J I 2017 Phys. Rev. X 8 011006
[42] Kaubruegger R, Pastori L and Budich J C 2018 Phys. Rev. B 97 195136
[43] Cai Z 2018 Phys. Rev. B 97 035116
[44] Saito H and Kato M 2017 J. Phys. Soc. Jpn. 87 014001
[45] Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C and Guo G P 2019 Adv. Quantum Technol. 2 1800077
[46] Rao W J 2020 Chin. Phys. Lett. 37 080501
[47] Yang Y, Cao H X and Zhang Z J 2020 Sci. China-Phys. Mech. Astron. 63 210312
[48] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[49] Schlingemann D and Werner R F 2002 Phys. Rev. A 65 012308
[50] Mandel O, Greiner M, Widera A, Rom T, Haensch T W and Bloch I 2003 Nature 425 937
[51] Walther P, Resch J K, Rudolph T, Schenck E and Weinfurter H 2005 Nature 434 169
[52] Gao X and Duan L M 2017 Nat. Commun. 8 662
[53] Kottos T and Smilansky U 1997 Phys. Rev. Lett. 79 4794
[54] Kottos T and Smilansky U 1999 Ann. Phys. N.Y. 274 76
[55] Tanner G 2000 J. Phys. A: Math. Gen. 33 3567
[56] Tanner G 2001 J. Phys. A: Math. Gen. 34 8485
[57] Pakoński P, Życzkowski K and Kuś M 2001 J. Phys. A: Math. Gen. 34 9303
[58] Chang C T and Hwang H C 1992 Ind. Eng. Chem. Res. 31 1490
[59] Palmer C and Chung P W H 2000 Ind. Eng. Chem. Res. 39 2548
[60] Bhushan M and Rengaswamy R 2000 Ind. Eng. Chem. Res. 39 999
[61] Deng D L, Li X P and Sarma S D 2017 Phys. Rev. B 96 195145
[62] Kay E 1977 J. Oper. Res. Soc. 28 237
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[4] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[5] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[6] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[7] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[8] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[9] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[10] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[11] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[12] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[13] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[14] A rational quantum state sharing protocol with semi-off-line dealer
Hua-Li Zhang(张花丽), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Yu Yang(杨榆), and Xiu-Bo Chen(陈秀波). Chin. Phys. B, 2022, 31(5): 050309.
[15] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
No Suggested Reading articles found!