Abstract Non-Hermitian quasicrystals possess and metal-insulator transitions induced by gain and loss or nonreciprocal effects. In this work, we uncover the nature of localization transitions in a generalized Aubry-André-Harper model with dimerized hopping amplitudes and complex onsite potential. By investigating the spectrum, adjacent gap ratios and inverse participation ratios, we find an extended phase, a localized phase and a mobility edge phase, which are originated from the interplay between hopping dimerizations and non-Hermitian onsite potential. The lower and upper bounds of the mobility edge are further characterized by a pair of topological winding numbers, which undergo quantized jumps at the boundaries between different phases. Our discoveries thus unveil the richness of topological and transport phenomena in dimerized non-Hermitian quasicrystals.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11905211), the China Postdoctoral Science Foundation (Grant No. 2019M662444), the Fundamental Research Funds for the Central Universities, China (Grant No. 841912009), the Young Talents Project at Ocean University of China (Grant No. 861801013196), and the Applied Research Project of Postdoctoral Fellows in Qingdao (Grant No. 861905040009).
Longwen Zhou(周龙文) and Wenqian Han(韩雯岍) Non-Hermitian quasicrystal in dimerized lattices 2021 Chin. Phys. B 30 100308
[1] Zilberberg O 2021 Opt. Mater. Express11 1592 [2] Jagannathan A 2020 arXiv:2012.14744 [cond-mat.stat-mech] [3] Kramer B and Kinnon M A 1993 Rep. Prog. Phys.56 1469 [4] Sokoloff J B 1985 Phys. Rep.126 189 [5] Aubry S and André G 1980 Ann. Israel Phys. Soc.3 133 [6] Harper P G 1955 Proc. Phys. Soc. London A68 874 [7] Wang P, Zheng Y, Chen X, Huang C, Kartashov Y V, Torner L, Konotop V V and Ye F 2020 Nature577 42 [8] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature453 895 [9] Lüschen H P, Scherg S, Kohlert T, Schreiber M, Bordia P, Li X, Sarma S D and Bloch I 2018 Phys. Rev. Lett.120 160404 [10] Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N and Silberberg Y 2009 Phys. Rev. Lett.103 013901 [11] Ni X, Chen K, Weiner M, Apigo D J, Prodan C, Alú A, Prodan E and Khanikaev A B 2019 Commun. Phys.2 55 [12] Levi L, Rechtsman M, Freedman B, Schwartz T, Manela O and Segev M 2011 Science332 1541 [13] Vardeny Z V and Nahata A 2011 Nat. Photon.5 453 [14] Verbin M, Zilberberg O, Kraus Y E, Lahini Y and Silberberg Y 2013 Phys. Rev. Lett.110 076403 [15] Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett.109 106402 [16] Lang L J, Cai X and Chen S 2012 Phys. Rev. Lett.108 220401 [17] Ganeshan S, Sun K and Sarma S D 2013 Phys. Rev. Lett.110 180403 [18] Cestari J C C, Foerster A and Gusmao M A 2016 Phys. Rev. B93 205441 [19] Wang J, Liu X J, Gao X L and Hu H 2016 Phys. Rev. B93 104504 [20] Liu F, Ghosh S and Chong Y D 2015 Phys. Rev. B91 014108 [21] Zhou L, Wang H, Ho D Y H and Gong J 2014 Eur. Phys. J. B87 204 [22] Sokoloff J B 1981 Phys. Rev. B23 6422 [23] Soukoulis C M and Economou E N 1982 Phys. Rev. Lett.48 1043 [24] Kohmoto M 1983 Phys. Rev. Lett.51 1198 [25] Thouless D J 1983 Phys. Rev. B28 4272 [26] Abe S and Hiramoto H 1987 Phys. Rev. A36 5349 [27] Guarneri I 1989 Europhys. Lett.10 95 [28] Geisel T, Ketzmerick R and Petschel G 1991 Phys. Rev. Lett.66 1651 [29] Artuso R, Casati G and Shepelyansky D L 1992 Phys. Rev. Lett.68 3826 [30] Guarneri I and Mantica G 1994 Phys. Rev. Lett.73 3379 [31] Piechon F 1996 Phys. Rev. Lett.76 4372 [32] Wilkinson M and Austin E J 1994 Phys. Rev. B50 1420 [33] Ketzmerick R, Kruse K, Kraut S and Geisel T 1997 Phys. Rev. Lett.79 1959 [34] Moura F A B F and Lyra M L 1998 Phys. Rev. Lett.81 3735 [35] Jeon G S, Kim B J, Yiy S W and Choi M Y 1998 J. Phys. A31 1353 [36] Boers D J, Goedeke B, Hinrichs D and Holthaus M 2007 Phys. Rev. A75 063404 [37] Roscilde T 2008 Phys. Rev. A77 063605 [38] Roux G, Barthel T, McCulloch I P, Kollath C, Schollwöck U and Giamarchi T 2008 Phys. Rev. A78 023628 [39] Schreiber A, Cassemiro K N, Potocek V, Gabris A, Jex I and Silberhorn C 2011 Phys. Rev. Lett.106 180403 [40] Yao H, Khoudli H, Bresque L and Sanchez-Palencia L 2019 Phys. Rev. Lett.123 070405 [41] Yao H, Giamarchi T and Sanchez-Palencia L 2020 Phys. Rev. Lett.125 060401 [42] Jitomirskaya S Y 1999 Ann. Math.150 1159 [43] Avila A and Jitomirskaya S 2006 Lect. Notes Phys.690 5 [44] Rossignolo M and Dell'Anna L 2019 Phys. Rev. B99 054211 [45] Purkayastha A, Sanyal S, Dhar A and Kulkarni M 2018 Phys. Rev. B97 174206 [46] Takada Y, Ino K and Yamanaka M 2004 Phys. Rev. E70 066203 [47] Chang I, Ikezawa K and Kohmoto M 1997 Phys. Rev. B55 12971 [48] Hiramoto H and Kohmoto M 1992 Int. J. Mod. Phys. B06 281 [49] Biddle J and Sarma S D 2010 Phys. Rev. Lett.104 070601 [50] Ganeshan S, Pixley J H and Sarma S D 2015 Phys. Rev. Lett.114 146601 [51] Xu Z, Huangfu H, Zhang Y and Chen S 2020 New J. Phys.22 013036 [52] Longhi S 2019 Phys. Rev. Lett.122 237601 [53] Longhi S 2019 Phys. Rev. B100 125157 [54] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B102 024205 [55] Longhi S 2021 Phys. Rev. B103 054203 [56] Jiang H, Lang L, Yang C, Zhu S and Chen S 2019 Phys. Rev. B100 054301 [57] Liu Y, Jiang X P, Cao J and Chen S 2020 Phys. Rev. B101 174205 [58] Liu Y, Wang Y, Zheng Z and Chen S 2021 Phys. Rev. B103 134208 [59] Liu Y, Wang Y, Liu X, Zhou Q and Chen S 2021 Phys. Rev. B103 014203 [60] Xu Z and Chen S 2021 Phys. Rev. A103 043325 [61] Zeng Q, Chen S and Lü R 2017 Phys. Rev. A95 062118 [62] Cai X 2021 Phys. Rev. B103 014201 [63] Jazaeri A and Satija I I 2001 Phys. Rev. E63 036222 [64] Zeng Q, Yang Y and Lü R 2020 Phys. Rev. B101 125418 [65] Zeng Q, Yang Y and Xu Y 2020 Phys. Rev. B101 020201(R) [66] Tang L, Zhang G, Zhang L and Zhang D 2021 Phys. Rev. A103 033325 [67] Liu T, Cheng S, Guo H and Gao X 2021 Phys. Rev. B103 104203 [68] Zhai L, Huang G and Yin S 2021 Phys. Rev. B104 014202 [69] Zeng Q and Xu Y 2020 Phys. Rev. Res.2 033052 [70] Su W, Schrieffer J and Heeger A 1979 Phys. Rev. Lett.42 1698 [71] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L and Gadway B 2018 Science362 929 [72] Asbóth J K, Oroszlány L and Pályi A 2016 A Short Course on Topological Insulators (Cham: Springer) p. 1 [73] Ashida Y, Gong Z and Ueda M 2020 Advances in Physics69 3 [74] Zhou L and Gong J 2018 Phys. Rev. B98 205417 [75] Zhou L, Wang Q, Wang H and Gong J 2018 Phys. Rev. A98 022129 [76] Zykin A Y, Skryabin D V and Kartashov Y V 2021 Opt. Lett.46 2123 [77] Goldsheid I Y and Khoruzhenko B A 1998 Phys. Rev. Lett.80 2897 [78] Molinari L G 2009 J. Phys. A: Math. Theor.42 265204 [79] Markum H, Pullirsch R and Wettig T 1999 Phys. Rev. Lett.83 484 [80] Chalker J T and Mehlig B 1998 Phys. Rev. Lett.81 3367 [81] Hamazaki R, Kawabata K, Kura N and Ueda M 2020 Phys. Rev. Res.2 023286 [82] Girvin S M and Yang K 2019 Modern Condensed Matter Physics (Cambridge: Cambridge University Press) p. 255
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.