Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100307    DOI: 10.1088/1674-1056/ac0ba8
Special Issue: SPECIAL TOPIC — Non-Hermitian physics
SPECIAL TOPIC—Non-Hermitian physics Prev   Next  

Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics

Da-Jian Zhang(张大剑)1,†, Qing-hai Wang(王清海)2,‡, and Jiangbin Gong(龚江滨)2,§
1 Department of Physics, Shandong University, Jinan 250100, China;
2 Department of Physics, National University of Singapore, 117551, Singapore
Abstract  A new type of quantum theory known as time-dependent $\mathcal{PT}$-symmetric quantum mechanics has received much attention recently. It has a conceptually intriguing feature of equipping the Hilbert space of a $\mathcal{PT}$-symmetric system with a time-varying inner product. In this work, we explore the geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics. We find that a geometric phase can emerge naturally from the cyclic evolution of a $\mathcal{PT}$-symmetric system, and further formulate a series of related differential-geometry concepts, including connection, curvature, parallel transport, metric tensor, and quantum geometric tensor. These findings constitute a useful, perhaps indispensible, tool to investigate geometric properties of $\mathcal{PT}$-symmetric systems with time-varying system's parameters. To exemplify the application of our findings, we show that the unconventional geometric phase [Phys. Rev. Lett. 91 187902 (2003)], which is the sum of a geometric phase and a dynamical phase proportional to the geometric phase, can be expressed as a single geometric phase unveiled in this work.
Keywords:  time-dependent $\mathcal{PT}$-symmetric quantum mechanics      geometry      time-varying inner product      unconventional geometric phase  
Received:  04 May 2021      Revised:  02 June 2021      Accepted manuscript online:  16 June 2021
PACS:  03.65.-w (Quantum mechanics)  
  02.40.Ky (Riemannian geometries)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: J.G. is supported by Singapore Ministry of Education Academic Research Fund Tier I (WBS No. R-144-000-353-112) and by the Singapore NRF Grant No. NRFNRFI2017-04 (WBS No. R-144-000-378-281). Q.W. is supported by Singapore Ministry of Education Academic Research Fund Tier I (WBS No. R-144-000-352-112).
Corresponding Authors:  Da-Jian Zhang, Qing-hai Wang, Jiangbin Gong     E-mail:  zdj@sdu.edu.cn;qhwang@nus.edu.sg;phygj@nus.edu.sg

Cite this article: 

Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨) Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics 2021 Chin. Phys. B 30 100307

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Gong J and Wang Q H 2013 J. Phys. A: Math. Theor. 46 485302
[3] Zhang D J, Wang Q H and Gong J 2019 Phys. Rev. A 100 062121
[4] Gong J and Wang Q H 2010 Phys. Rev. A 82 012103
[5] Fring A and Moussa M H Y 2016 Phys. Rev. A 94 042128
[6] Fring A and Moussa M H Y 2016 Phys. Rev. A 93 042114
[7] Maamache M, Djeghiour O K, Mana N and Koussa W 2017 Eur. Phys. J. Plus 132 383
[8] Mead L R and Garfinkle D 2017 AIP Adv. 7 085001
[9] Mostafazadeh A 2017 Phys. Rev. D 98 046022
[10] Zhang D J, Wang Q H and Gong J 2019 Phys. Rev. A 99 042104
[11] Deffner S and Saxena A 2015 Phys. Rev. Lett. 114 150601
[12] Gardas B, Deffner S and Saxena A 2016 Sci. Rep. 6 23408
[13] Zeng M and Yong E H 2017 J. Phys. Commun. 1 031001
[14] Wei B B 2018 Phys. Rev. A 97 012105
[15] Wei B B 2018 Phys. Rev. E 97 012114
[16] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
[17] Jin L and Song Z 2009 Phys. Rev. A 80 052107
[18] Zhang X Z, Jin L and Song Z 2012 Phys. Rev. A 85 012106
[19] Zhang X Z and Song Z 2013 Phys. Rev. A 88 042108
[20] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117
[21] Ashida Y, Furukawa S and Ueda M 2017 Nat. Commun. 8 15791
[22] Kawabata K, Ashida Y and Ueda M 2017 Phys. Rev. Lett. 119 190401
[23] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K, Segev M, Rechtsman M C and Szameit A 2017 Nat. Mater. 16 433
[24] Menke H and Hirschmann M M 2017 Phys. Rev. B 95 174506
[25] Jin L 2018 Phys. Rev. A 98 022117
[26] Jin L 2018 Phys. Rev. A 97 012121
[27] Kawabata K, Ashida Y, Katsura H and Ueda M 2018 Phys. Rev. B 98 085116
[28] Lourenco J A S, Eneias R L and Pereira R G 2018 Phys. Rev. B 98 085126
[29] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[30] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[31] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[32] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[33] Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X and Du J 2019 Science 364 878
[34] Dong Y, Zhang W J, Liu J and Xie X T 2019 Chin. Phys. B 28 114202
[35] Li L, Lee C H and Gong J 2019 Phys. Rev. B 100 075403
[36] Zhang X Z and Song Z 2019 Phys. Rev. A 99 012113
[37] Liu H, Su Z, Zhang Z Q and Jiang H 2020 Chin. Phys. B 29 050502
[38] Zhou L, Gu Y and Gong J 2021 Phys. Rev. B 103 L041404
[39] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[40] Garrison J G and Wright E M 1988 Phys. Lett. A 128 177
[41] Dattoli G, Mignani R and Terre A 1990 J. Phys. A: Math. Gen. 23 5795
[42] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[43] Strictly speaking, as a local coordinate, θ's shoud comprise an open interval of $\mathbb{R}$ or $\mathbb{R}$ itself. This can be achieved by subdividing the local patch into smaller ones and then defining local coordinates respectively on these smaller patches. In this paper, we do not adopt such a cumbersome treatment and simply define θ up to an integer multiple of 2π.
[44] Simon B 1983 Phys. Rev. Lett. 51 2167
[45] In mathematical terminology, $|\phi \rangle$ appearing in the expression $\rho=|\phi \rangle\langle{\widetilde{\phi}}|$ can be chosen as a local section. A local section is a continuous mapping of a patch of $\mathcal{R}$ into the fibers above the patch. This amounts to the fact that the local coordinate $\theta$ is a function of $(\lambda^1,\ldots,\lambda^{m+n})$, i.e., $\theta=\theta(\lambda^1,\ldots,\lambda^{m+n})$. So, a local section $|\phi \rangle$ can be expressed as $|\phi \rangle=|{\phi(\lambda^1,\ldots,\lambda^{m+n})}\rangle$.
[46] Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289
[47] Blanes S, Casas F, Oteo J A and Ros J 2009 Phys. Rep. 470 151
[48] Gong J and Wang Q H 2018 Phys. Rev. A 97 052126
[49] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[50] Zhou L, Wang Q H, Wang H and Gong J 2018 Phys. Rev. A 98 022129
[1] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[2] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[3] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[4] Geometric structure of N2Oq+ (q = 5, 6) studied by Ne8+ ion-induced Coulomb explosion imaging
Xi Zhao(赵曦), Xu Shan(单旭), Xiaolong Zhu(朱小龙), Lei Chen(陈磊), Zhenjie Shen(沈镇捷), Wentian Feng(冯文天), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Ruitian Zhang(张瑞田), Yong Gao(高永), Zhongkui Huang(黄忠魁), Shaofeng Zhang(张少锋), Xinwen Ma(马新文), and Xiangjun Chen(陈向军). Chin. Phys. B, 2021, 30(11): 113302.
[5] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
[6] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[7] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[8] Accurate calculation of electron affinity for S3
Xue Yang(杨雪), Haifeng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(1): 013203.
[9] High power external-cavity surface-emitting laser with front and end pump
Lidan Jiang(蒋丽丹), Renjiang Zhu(朱仁江), Maohua Jiang(蒋茂华), Dingke Zhang(张丁可), Yuting Cui(崔玉亭), Peng Zhang(张鹏), Yanrong Song(宋晏蓉). Chin. Phys. B, 2018, 27(8): 084205.
[10] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[11] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[12] Effect of the asymmetric geometry on the wake structures of a pitching foil
LiMing Chao(朝黎明), Guang Pan(潘光), Dong Zhang(张栋). Chin. Phys. B, 2018, 27(11): 114701.
[13] Charge distribution in graphene from quantum calculation
Ze-Fen Liang(梁泽芬), Sheng-Ling Ma(马生凌), Hong-Tao Xue(薛红涛), Fan Ding(樊丁), Jingbo Louise Liu, Fu-Ling Tang(汤富领). Chin. Phys. B, 2018, 27(1): 016801.
[14] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[15] Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor
S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou. Chin. Phys. B, 2017, 26(2): 027303.
No Suggested Reading articles found!