Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108201    DOI: 10.1088/1674-1056/abee09
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys

Hüseyin Yıldırım1,† and Ali Kemal Garip2
1 Yenice Vocational School, Karabuk University, Karabuk, Turkey;
2 Department of Physics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
Abstract  The classical molecular dynamics simulations in canonical NVT ensemble conditions are used to investigate the melting transition in different heating rates of Pt-Ag-Au ternary nanoalloys. In order to obtain the initial configurations used in the molecular dynamics simulations, optimizing the chemical ordering of Pt13AgnAu42-n (n=0-42) ternary nanoalloys was performed using the Basin-Hopping algorithm which would not allow changes in the icosahedron structure. The Gupta many-body potential was used to model interatomic interactions in both molecular dynamics simulations and optimization simulations. The melting transitions of selected Pt-Ag-Au nanoalloys were explored using caloric curves and Lindemann parameters. There have been two identified types of melting mechanisms, one includes sudden jump behavior in the caloric curve and the other is an isomerization while melting transition. The temperature range in which the isomerization takes place depends on the heating rate value.
Keywords:  chemical ordering      melting      optimization      nanoalloys  
Received:  25 January 2021      Revised:  08 March 2021      Accepted manuscript online:  12 March 2021
PACS:  36.40.-c (Atomic and molecular clusters)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Corresponding Authors:  Hüseyin Yıldırım     E-mail:  huseyinyildirim@karabuk.edu.tr

Cite this article: 

Hüseyin Yıldırım and Ali Kemal Garip Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys 2021 Chin. Phys. B 30 108201

[1] Cezar H M, Rondina G G and Da Silva J L F 2019 J. Chem. Phys. 151 204301
[2] Taran S, Garip A K and Arslan H 2020 Chin. Phys. B 29 077801
[3] Taran S 2020 Sakarya University Journal of Science 24 501
[4] Taran S, Garip A K and Arslan H 2020 J. Cluster Sci. 32 199
[5] Yildirim H and Arslan H 2020 Int. J. Mod. Phys. C 31 2050078
[6] Taran S 2019 Comput. Theor. Chem. 1166 112576
[7] Garip A K 2018 Int. J. Mod. Phys. C 29 1850084
[8] Wang L C, Zhong Y, Jin H, Widmann D, Weissmüller J and Behm R J 2013 Beilstein J. Nanotechnol. 4 111
[9] Li S, Chen H, Liu X, Liu H, Ma J and Zhu Y 2020 Chem. Sci. 11 8000
[10] Christopher P and Linic S 2008 J. Am. Chem. Soc. 130 11264
[11] Zhu L, Zhang W, Zhu J and Cheng D 2017 App. Catal. A: General 538 27
[12] Woldu A R 2020 Nanoscale 12 8626
[13] Liu J H, Wang A, Chi Y S, Lin H P and Mou C Y 2005 J. Phys. Chem. B 109 40
[14] Liu X, Li Y, Lee J W, Hong C Y, Mou C Y and Jang B W L 2012 Appl. Catal. A: General 439-440 8
[15] Zheng J, Qu J, Lin H, Zhang Q, Yuan X, Yang Y and Yuan Y 2016 ACS Catal. 6 6662
[16] Xia Z, Li C M and Dai L 2019 Matter 1 1445
[17] Noh S H, Han B and Ohsaka T 2015 Nano Res. 8 3394
[18] Zhang H, Wang H, Cao J and Ni Y 2017 J. Alloys Compd. 698 654
[19] Lan J, Li C, Liu T and Yuan Q 2019 J. Saudi Chem. Soc. 23 43
[20] Wang X, Zhang L, Gong H, Zhu Y, Zhao H and Fu Y 2016 Electrochim. Acta 212 277
[21] Thongthaia K, Pakawanitb P, Chenlekb N, Kimc J, Anantad S and Srisombat L 2017 Nanotechnology 28 375602
[22] Tao J, Ji Q, Shao G, Li Z, Liu T and Wen Y 2017 J. Alloys Compd. 716 240
[23] Fan T, Liu T, Zheng J, Shao G and Wen Y 2015 J. Mater. Sci. 50 3308
[24] Cuevas-Muñiz F M, Gurrola M P, Tellez-Vazquez O, Esparza R, Guerra-Balcazar M, Arriaga L G and Ledesma-Garcia J 2015 Int. J. Hydrogen Energy 40 17284
[25] Deng L, Hu W, Deng H and Xiao S 2010 J. Phys. Chem. C 114 11026
[26] Kristian N and Wang X 2008 Electrochem. Commun. 10 12
[27] Oliveira R C P, Sevim M, Sljukic B, Sequira C A C, Metin Ö and Santos D M F 2020 Catal. Today 357 291
[28] Kang J, Chen T, Zhang D and Guo L 2016 Nano Energy 23 145
[29] Wang M, He Y, Li R, Ma Z, Zhang Z and Wang X 2015 Electrochim. Acta 178 259
[30] Fu G, Xia B, Ma R, Chen Y, Tang Y and Lee J 2015 Nano Energy 12 824
[31] Ferrando R, Jellinek J and Johnston R L 2008 Chem. Rev. 108 845
[32] Toshima N and Zhang H 2012 Macromol. Symp. 317 149
[33] Zhang H, Okumura M and Toshima N 2011 J. Phys. Chem. C 115 14883
[34] Ferrando R 2016 Structure and Properties of Nanoalloys in Frontiers of Nanoscience (Amsterdam: Elsevier) Vol. 10
[35] Echt O, Sattler K and Recknagel E 1981 Phys. Rev. Lett. 47 1121
[36] Wu X and Sun Y 2017 J. Nanopart. Res. 19 201
[37] Michaelian K, Rendon N and Garzon I L 1999 Phys. Rev. B 60 2000
[38] Lambie S G, Weal G R, Blackmore C E, Palmer R E and Garden A L 2019 Nanoscale Adv. 1 2416
[39] Wu X, Cai W and Shao X 2009 J. Comput. Chem. 30 1992
[40] Chen F, Curley B C, Rossi G and Johnston R L 2007 J. Phys. Chem. C 111 9157
[41] Arianfar F, Rostamian R and Behnejad H 2017 Phys. Chem. Res. 5 359
[42] Piotrowski M J, Piquini P and Da Silva J L F 2012 J. Phys. Chem. C 116 18432
[43] Zhao Z, Li M, Cheng D and Zhu J 2014 Chem. Phys. 441 152
[44] Garip A K 2019 Mol. Simul. 45 1004
[45] Wales D J and Doye J P K 1997 J. Phys. Chem. A 101 5111
[46] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[47] Gupta R P 1981 Phys. Rev. B 23 6265
[48] Pacheco-Contreras R, Juárez-Sánchez J O, Dessens-Félix M, Aguilera-Granja F, Fortunelli A and Posada-Amarillas A 2018 Comput. Mater. Sci. 141 30
[49] Bush I J, Todorov I T and Smith W 2006 Comput. Phys. Commun. 175 323
[50] Todorov I T, Smith W, Trachenko K and Dove M T 2006 J. Mater. Chem. 16 1911
[51] Datta S 2019 AIP Adv. 9 115316
[52] Garip A K 2020 Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 1732
[53] Arslan H, Garip A K and Taran S 2019 J. Nanopart. Res. 21 130
[54] Gould A L, Logsdail A J and Catlow C R A 2015 J. Phys. Chem. C 119 23685
[55] Chen F and Johnston R L 2008 Appl. Phys. Lett. 92 023112
[56] Kuntová Z, Rossi G and Ferrando R 2008 Phys. Rev. B 77 205431
[57] Mottet C, Goniakowski J, Baletto F, Ferrando R and Treglia G 2004 Phase Trans. 77 101
[58] Kart H H, Yildirim H, Kart S O and Çağin T 2014 Mater. Chem. Phys. 147 204
[59] Lee M S, Chacko S and Kanhere D G 2005 J. Chem. Phys. 123 164310
[60] Stukowski A 2012 Modelling Simul. Mater. Sci. Eng. 20 045021
[61] Ackland G J and Jones A P 2006 Phys. Rev. B 73 054104
[62] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[3] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[4] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[5] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[6] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[7] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[8] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[9] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[10] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[11] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[12] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[13] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[14] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[15] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
No Suggested Reading articles found!