Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038105    DOI: 10.1088/1674-1056/abd7d8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Properties of B4C-TiB2 ceramics prepared by spark plasma sintering

Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞)†, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超)‡, Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏)§
1 Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  By doping titanium hydride (TiH2) into boron carbide (B4C), a series of B4C+x wt% TiH2 (x = 0, 5, 10, 15, and 20) composite ceramics were obtained through spark plasma sintering (SPS). The effects of the sintering temperature and the amount of TiH2 additive on the microstructure, mechanical and electrical properties of the sintered B4C-TiB2 composite ceramics were investigated. Powder mixtures of B4C with 0-20 wt% TiH2 were heated from 1400 °C to 1800 °C for 20 min under 50 MPa. The results indicated that higher sintering temperatures contributed to greater ceramic density. With increasing TiH2 content, titanium diboride (TiB2) formed between the TiH2 and B4C matrix. This effectively improved Young's modulus and fracture toughness of the composite ceramics, significantly improving their electrical properties: the electrical conductivity reached 114.9 Scm -1 at 1800 °C when x = 20. Optimum mechanical properties were obtained for the B4C ceramics sintered with 20 wt% TiH2, which had a relative density of 99.9 0.1%, Vickers hardness of 31.8 GPa, and fracture toughness of 8.5 MPa m1 / 2. The results indicated that the doping of fine Ti particles into the B4C matrix increased the conductivity and the fracture toughness of B4C.
Keywords:  boron carbide ceramics      conductivity      hardness      fracture toughness  
Received:  07 October 2020      Revised:  25 November 2020      Accepted manuscript online:  04 January 2021
PACS:  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  61.72.U- (Doping and impurity implantation)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  81.65.Ps (Polishing, grinding, surface finishing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704340 and 11804305) and the Scientific and Technology Project in Henan Province, China (Grant No. 202102210198).
Corresponding Authors:  Corresponding author. E-mail: zhangzf@zzu.edu.cn Corresponding author. E-mail: chenlc@zzu.edu.cn §Corresponding author. E-mail: xpjia@zzu.edu.cn   

Cite this article: 

Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏) Properties of B4C-TiB2 ceramics prepared by spark plasma sintering 2021 Chin. Phys. B 30 038105

1 An L Q, Wang L Y, Wang L F, Fan R H, Ito A and Goto T 2020 J. Eur. Ceram. Soc. 40 4589
2 Grigoriev S N, Volosova M A, Peretyagin P Y, Seleznev A E, Okunkova A A and Smirnov A 2018 Appl. Sci. 8 2385
3 Domnich V, Reynaud S, Haber R A and Chhowalla M 2011 J. Am. Ceram. Soc. 94 3605
4 Jamale S and Kumar B V M 2020 Int. J. Refract. Met. H 87 105124
5 Wang C C and Song L L 2019 Chin. Phys. B 28 066201
6 Sarithadevi H V, Swapna M S, Ambadas G and Sankararaman S 2018 Chin. Phys. B 27 107702
7 He Y, Shen Y D, Tang B and An Q 2020 J. Eur. Ceram. Soc. 40 4428
8 Zhang W, Yamashita S and Kita H 2019 Adv. Appl. Ceram. 118 222
9 Badica P, Grasso S, Borodianska H, Xie S S, Li P F, Takarko P, Reece M J, Sakka Y and Vasylkiv O 2014 J. Ceram. Soc. Jpn. 122 271
10 Sairam K, Sonber J K, Murthy T S R C, Subramanian C, Fotedar R K, Nanekar P and Hubli R C 2014 Int. J. Refract. Met. H 42 185
11 Singh P, Singh B, Kumar M and Kumar A 2014 Ceram. Int. 40 15331
12 Moskovskikh D O, Paramonov K A, Nepapushev A A, Shkodich N F and Mukasyan A S 2017 Ceram. Int. 43 8190
13 Heydari M S and Baharvandi H R 2015 Int. J. Refract. Met. H 51 224
14 Heydari M S and Baharvandi H R 2015 Int. J. Refract. Met. H 51 61
15 White R M and Dickey E C 2014 J. Eur. Ceram. Soc. 34 2043
16 Gao Y B, Tang T G, Yi C H, Zhang W, Li D C, Xie W B, Huang W and Ye N 2016 Mater. Design. 92 814
17 He Q L, Wang A Y, Liu C, Wang W M, Wang H and Fu Z Y 2018 J. Eur. Ceram. Soc. 38 2832
18 Yue X Y, Zhao S M, Lu P, Chang Q and Ru H Q 2010 Mat. Sci. Eng. A-Struct. 527 7215
19 White R M, Kunkle J M, Polotai A V and Dickey E C 2011 J. Eur. Ceram. Soc. 31 1227
20 Karimoto T and Nishimoto A 2019 Mater. Trans. 60 2387
21 Shi S F, Cho S H, Goto T and Sekino T 2018 J. Am. Ceram. Soc. 101 3181
22 Chu K, Liu Z F, Jia C C, Chen H, Liang X B, Gao W J, Tian W H and Guo H 2010 J. Alloy. Compd. 490 453
23 Tan Y Q, Chen C, Li F Z, Zhang H B, Zhang G J and Peng S M 2015 RSC. Adv. 5 76309
24 Pan Y and Chen S 2020 Int. J. Energ. Res. 44 4997
25 Ito M, Setoyama D, Matsunaga J, Muta H, Kurosaki K, Uno M and Yamanaka S 2006 J. Alloy. Compd. 420 25
26 Liu H, He P, Feng J C and Cao J 2009 Int. J. Hydrogen. Energ. 34 3018
27 Rehman S S, Ji W, Khan S A, Fu Z Y and Zhang F 2015 Ceram. Int. 41 1903
28 Pei L Z and Xiao H N 2009 J. Mater. Process. Tech. 209 2122
29 Yin S P, Zhang Z H, Cheng X W, Su T J, Hu Z Y, Song Q and Wang H 2018 Ceram. Int. 44 21626
30 Suresh S and Moorthi N S V 2012 Procedia. Eng. 38 89
31 Wen Q, Tan Y Q, Zhong Z H, Zhang H B and Zhou X S 2017 Mat. Sci. Eng. A-Struct. 701 338
32 Anstis G R, Chantikui P, Lawn B R and Marshall D B 1981 J. Am. Ceram. Soc. 64 533
33 Ma D J, Wang J L and Sun L 2017 J. Am. Ceram. Soc. 100 2296
34 Sengupta R, Bhattacharya M, Bandyopadhyay S and Bhowmick A K 2011 Prog. Polym. Sci. 36 638
35 Oku T, Kurumada A, Imamura Y and Ishihara M 2008 J. Nucl. Mater. 381 92
36 Peng C, Tang H, He Y, Lu X Q, Jia P, Liu G Y, Zhao Y C and Wang M Z 2020 J. Mater. Sci. Technol. 51 161
37 Skorokhod V and Krstic V 2000 J. Mater. Sci. Lett. 19 237
38 Shi L, Li H Y, Zou Z M, Fok A S L, Marsden B J, Hodgkins A, Mummery P M and Marrow J 2008 J. Nucl. Mater. 372 141
39 Chen H H N, Su R K L, Fok S L and Zhang H G 2017 Eng. Fract. Mech. 186 143
40 Ouagne P, Neighbour G B and McEnaney B 2002 J. Phys. D: Appl. Phys. 35 927
41 Reis J M L, Martins S A and Costa Mattos H S D 2020 J. Braz. Soc. Mech. Sci. 42 1045
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[9] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[12] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!