CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3 |
Tian-Hui Dong(董天慧)1, Xu-Dong Zhang(张旭东)1,†, Lin-Mei Yang(杨林梅)1, and Feng Wang(王峰)2 |
1 School of Science, Shenyang University of Technology, Shenyang 110870, China; 2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
|
Abstract In recent years, transition metal silicides have become the potential high temperature materials. The ternary silicide has attracted the attention of scientists and researchers. But their inherent brittle behaviors hinder their wide applications. In this work, we use the first-principles method to design four vacancy defects and discuss the effects of vacancy defects on the structural stability, mechanical properties, electronic and thermodynamic properties of hexagonal Cr5BSi3 silicide. The data of lattice vibration and thermodynamic parameters indicate that the Cr5BSi3 with different atomic vacancies can possess the structural stabilities. The different atomic vacancies change the mechanical properties and induce the Cr5BSi3 to implement the brittle-to-ductile transition. The shear deformation resistance and volume deformation resistance of Cr5BSi3 are weakened by different vacancy defects. But the brittleness behavior is remarkably improved. The structural stability and brittle-to-ductile transition of Cr5BSi3 with different vacancies are explored by the electronic structures. Moreover, the thermal parameters indicate that the Cr5BSi3 with vacancies exhibit different thermodynamic properties with temperature rising.
|
Received: 13 May 2021
Revised: 30 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
61.43.Bn
|
(Structural modeling: serial-addition models, computer simulation)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
61.72.jd
|
(Vacancies)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
Fund: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 2019JH/30100019). |
Corresponding Authors:
Xu-Dong Zhang
E-mail: zxdwfc@163.com
|
Cite this article:
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰) Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3 2022 Chin. Phys. B 31 026101
|
[1] Opela M M, Talmy I G and Zaykoski J A 2004 J. Mater. Sci. 39 5887 [2] Wie D M, Drewry D G, King D E and Hudson C M 2004 J. Mater. Sci. 39 5915 [3] Corral E L and Loehman R E 2008 J. Am. Ceram. Soc. 91 1495 [4] Blum Y D, Marschall J, Hui D and Young S 2008 J. Am. Ceram. Soc. 91 1453 [5] Roger J, Babizhetskyy V, Cordier S, Bauer J, Hiebl K, Le Polles L, Ashbrook S E, Halet J F and Guerin R 2005 J. Solid State Chem. 178 1851 [6] Tao X, Jund P, Colinet C and Tedenac J C 2009 Phys. Rev. B 80 104103 [7] Shugani M, Aynyas M and Sanyal S P 2015 Indian J. Pure Appl. Phys. 51 104 [8] Aydin S, Tatar A and Ciftci Y O 2016 Solid State Sci. 53 44 [9] Pan Y and Guan W M 2017 Phys. Chem. Chem. Phys. 19 19427 [10] Pan Y and Guan W M 2019 Ceram. Int. 45 15649 [11] Wang D Z, Hu Q W and Zeng X Y 2014 J. Alloys Compd. 588 502 [12] Cai G M, Zheng F, Yi D Q, Chen H M, Zhou S X, Long Z H and Jin Z P 2010 J. Alloys Compd. 494 148 [13] Müller C, Hasemann G, Regenberg M, Betke U and Krüger M 2020 Materials 13 2100 [14] Pan Y, Guan W M and Li Y Q 2018 Phys. Chem. Chem. Phys. 20 15863 [15] Nowotny H, Piegger E, Kieffer R and Benesovsky F 1958 Monatsh. Chem. 89 611 (in German) [16] Zhou Y C, Xiang H M, Dai F Z and Feng Z 2018 J. Mater. Sci. Technol. 34 1441 [17] Pan Y 2019 J. Electron. Mater. 48 5154 [18] Chen J Y, Zhang X D, Li D Z, Liu C, Ma H, Ying C H and Wang F 2020 Ceram. Int. 46 4595 [19] Sun L, Wang W, Liu C, Lv D, Gao Z Y and Xu B H 2021 Superlattices Microstruct. 149 106775 [20] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Math. 14 2717 [21] Vanderbilt D 1990 Phys. Rev. B 41 7892 [22] Kresse G and Joubert D 1999 Phys. Rev. B 59 758 [23] Prfrommer B G, Côté M, Loiue S G and Cohen M L 1997 J. Comput. Phys. 131 233 [24] Wang P, Zhang N C and Jiang C 2020 Chin. Phys. B 29 076201 [25] Noor N A, Mushahid N and Khan A 2020 Chin. Phys. B 29 097101 [26] Wen M, Xie X and Dong H 2020 Chin. Phys. B 29 078103 [27] Rieger W and Parthé E 1968 Acta Crystallogr. Sect. B:Struct. Sci. 24 456 [28] Chen J Y, Zhang X D, Ying C H, Ma H, Wang F and Guo H 2020 Ceram. Int. 46 10992 [29] Wang W, Sun L, Li Q, Lv D, Gao Z Y and Huang T 2021 J. Magn. Magn. Mater. 527 167692 [30] Zhu X Y, Gao X, Song H, Han G and Lin D 2017 Mater. Des. 119 30 [31] Pan Y, Zhang J, Jin C and Chen X 2016 Mater. Des. 108 13 [32] Pan Y, Chen S and Lin Y 2017 Int. J. Mod. Phys. B 31 1750096 [33] Yao J, Lin Y, Lin N and Le S 2012 Physica B 407 3888 [34] Feng L, Su J and Liu Z 2014 J. Alloys Compd. 613 122 [35] Freysoldt C, Grabowski B, Hickel T and Neugebauer 2014 J Rev. Mod. Phys. 86 253 [36] Khyzhun O Y, Bekenev V L, Denysyuk N M, Isaenko L I, Yelisseyev A P, Goloshumova A A and Tarasova A Y 2019 J. Electron. Mater. 48 3059 [37] Pu D L and Pan Y 2021 Ceram. Int. 47 2311 [38] Wang W X, Jiang Z Y and Lin Y M 2020 Chin. Phys. B 29 076101 [39] Chen J Y, Zhang X D, Yang L M and Wang F 2021 Commun. Theor. Phys. 73 045702 [40] Wu Y, Bao L, Wang X, Wang Y, Peng M and Duan Y 2020 Mater. Today Commun. 25 101410 [41] Hermet P, Khalil M, Viennois R, Beaudhuin M, Bourgogne D and Ravot D 2015 RSC Adv. 5 19106 [42] He C, Zhang M, Li T T and Zhang W X 2020 J. Mater. Chem. C 8 6542 [43] Zhou Z, Zhou X and Zhang K 2016 Comput. Mater. Sci. 113 98 [44] He C, Zhang M, Li T T and Zhang W X 2020 Appl. Surf. Sci. 505 144619 [45] Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909 [46] Wang Y, Wu Y, Wang X, Duan Y and Peng M 2021 J. Phy. Chem. Solids 151 109925 [47] Hill R 1952 Proc. Phys. Soc. 65 349 [48] Wang X, Bao L, Wang Y, Wu Y, Duan Y and Peng M 2021 Mater. Today Commun. 26 101723 [49] He C, Zhang M, Li T T and Zhang W X 2020 J. Mater. Chem. C 8 6542 [50] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [51] Wu Y, Wang X, Wang Y, Duan Y and Peng M 2021 Opt. Mater. 114 110963 [52] Grimvall G 1999 Thermo Physical Properties of Materials (Amsterdam:North Holland) [53] Pugh S F 1954 Philos. Mag. 45 823 [54] Lewandowski J J, Wang W H and Greer A L 2005 Philos. Mag. Lett. 85 77 [55] Li T T, He C and Zhang W X 2021 J. Energy Chem. 52 121 [56] Li T T, He C and Zhang W X 2020 Energy Storage Mater. 25 866 [57] He C, Zhang M and Zhang W X 2019 Solid State Commun. 303 113736 [58] Kittel C 1996 Introduction to Solid State Physics (New York:Wiley) [59] Duan Y, Wang Y, Peng M and Wang K 2021 Mater. Today Commun. 26 101991 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|