|
|
Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate |
Hui Guo(郭慧)1,2, Xu Qiu(邱旭)3,†, Yan Ma(马燕)1,2, Hai-Feng Jiang(姜海峰)1,2,4, and Xiao-Fei Zhang(张晓斐)1,2,‡ |
1 Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences(CAS), Xi'an 710600, China; 2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Economics and Management, Chongqing Normal University, Chongqing 401331, China; 4 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China |
|
|
Abstract We have investigated the dynamics of bright solitons in a spin-orbit coupled spin-1 Bose-Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a plane wave bright soliton with a single finite momentum, we have derived the motion equations of soliton's spin and center of mass, and obtained its exact analytical solutions. Our results show that the spin-orbit coupling couples the soliton's spin with its center-of-mass motion, the spin oscillations induced by the exchange of atoms between components result in the periodical oscillation of center-of-mass, and the motion of center of mass of soliton can be viewed as a superposition of periodical and linear motions. Our analytical results have also been confirmed by the direct numerical simulations of Gross-Pitaevskii equations.
|
Received: 28 November 2020
Revised: 31 December 2020
Accepted manuscript online: 07 January 2021
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775253) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-7016). |
Corresponding Authors:
Xu Qiu, Xiao-Fei Zhang
E-mail: aileenchur@126.com;xfzhang@ntsc.ac.cn
|
Cite this article:
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐) Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate 2021 Chin. Phys. B 30 060310
|
[1] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198 [2] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290 [3] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150 [4] Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401 [5] Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S and Cornish S L 2013 Nat. Commun. 4 1865 [6] Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10 918 [7] Yefsah T, Sommer A T, Ku M J H, Cheuk L W, Ji W, Bakr W S and Zwierlein M W 2013 Nature 499 426 [8] Ku M J H, Ji W, Mukherjee B, Guardado-Sanchez E, Cheuk L W, Yefsah T and Zwierlein M W 2014 Phys. Rev. Lett. 113 065301 [9] Lin Y J, Jiménez-GarcÍa K and Spielman I B 2011 Nature 471 83 [10] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301 [11] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301 [12] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302 [13] Li J, He T, Bai J, Liu B and Wang H Y 2021 Chin. Phys. B 30 030302 [14] H Zhai 2015 Rep. Prog. Phys. 78 026001 [15] Zhou X, Li Y, Cai Z and Wu C J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001 [16] Wu C J, Ian M S and Zhou X F 2011 Chin. Phys. Lett. 28 097102 [17] Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602 [18] Li Y, Pitaevskii L P and Stringari S 2012 Phys. Rev. Lett. 108 225301 [19] Gong M, Chen G, Jia S T and Zhang C 2012 Phys. Rev. Lett. 109 105302 [20] Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X, Guo G and Zhang C 2013 Nat. Commun. 4 2710 [21] Zhang W and Yi W 2013 Nat. Commun. 4 2711 [22] Shi T T, Wang L J, Wang J K and Zhang W 2020 Acta Phys. Sin. 69 016701 (in Chinese) [23] Xu Y, Zhang Y and Wu B 2013 Phys. Rev. A 87 013614 [24] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101 [25] Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J and Schmelcher P 2013 Europhys. Lett. 103 20002 [26] Kartashov Y V, Konotop V V and Abdullaev F K 2013 Phys. Rev. Lett. 111 060402 [27] Liu Y K and Yang S J 2014 Europhys. Lett. 108 30004 [28] Kartashov Y V, Konotop V V and Zezyulin D A 2014 Phys. Rev. A 90 063621 [29] Gautam S and Adhikari S K 2015 Laser Phys. Lett. 12 045501 [30] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 063617 [31] Zhang Y, Xu Y and Busch T 2015 Phys. Rev. A 91 043629 [32] Peotta S, Mireles F and Ventra M D 2015 Phys. Rev. A 91 021601 [33] Sakaguchi H, Li B and Malomed B A 2014 Phys. Rev. E 89 032920 [34] Sakaguchi H, Sherman E Y and Malomed B A 2016 Phys. Rev. E 94 032202 [35] Salasnich L, Cardoso W B and Malomed B A 2014 Phys. Rev. A 90 033629 [36] Sakaguchi H and Malomed B A 2014 Phys. Rev. E 90 062922 [37] Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403 [38] Zhang Y C, Zhou Z W, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902 [39] Beličev P P, Gligorić G, Petrovic J, Maluckov A, Hadžievski L and Malomed B A 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065301 [40] Li Y, Liu Y, Fan Z, Pang W, Fu S and Malomed B A 2017 Phys. Rev. A 95 063613 [41] Liao B, Li S, Huang C, Luo Z, Pang W, Tan H, Malomed B A and Li Y 2017 Phys. Rev. A 96 043613 [42] Sakaguchi H and Malomed B A 2018 Phys. Rev. A 97 013607 [43] Zhong R, Chen Z, Huang C, Luo Z, Tan H, Malomed B A and Li Y 2018 Front. Phys. 13 130311 [44] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502 [45] Xu Y, Mao L, Wu B and Zhang C 2014 Phys. Rev. Lett. 113 130404 [46] Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A and Ji A C 2016 Phys. Rev. A 94 061602 [47] Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q and Ji A C 2018 Ann. Phys. 390 180 [48] Wen L, Liang Y, Zhou J, Yu P, Xia L, Liu L B, Zhang X F 2019 Acta Phys. Sin. 68 080301 (in Chinese) [49] Kengnea E, Liu W M and Malomed B A 2021 Phys. Rep. 899 1 [50] Sakaguchi H and Malomed B A 2017 Phys. Rev. A 96 043620 [51] Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401 [52] Gerbier F, Widera A, Fölling S, Mandel O and Bloch I 2006 Phys. Rev. A 73 041602 [53] Bookjans E M, Vinit A and Raman C 2011 Phys. Rev. Lett. 107 195306 [54] Li L, Li Z, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611 [55] Zhao D, Song S W, Wen L, Li Z D, Luo H G and Liu W M 2015 Phys. Rev. A 91 013619 [56] Bao W and Cai Y 2018 Commun. Comput. Phys. 24 899 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|