CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Band alignment in SiC-based one-dimensional van der Waals homojunctions |
Xing-Yi Tan(谭兴毅)1,2,†, Lin-Jie Ding(丁林杰)1, and Da-Hua Ren(任达华)2 |
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China; 2 School of Information Engineering, Hubei Minzu University, Enshi 445000, China |
|
|
Abstract The density functional theory method is utilized to verify the electronic structures of SiC nanotubes (SiCNTs) and SiC nanoribbons (SiCNRs) one-dimensional (1D) van der Waals homojunctions (vdWh) under an applied axial strain and an external electric field. According to the calculated results, the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-II band alignment and robust electronic structures with different diameters or widths. Furthermore, the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-I band alignment, respectively, in a range of[-0.3, -0.1] V/Å and[0.1, 0.3] V/Å and change into metal when the electric field intensity is equal to or higher than 0.4 V/Å. Interestingly, the SiCNTs/SiCNRs 1D vdWhs have robust electronic structures under axial strain. These findings demonstrate theoretically that the SiCNTs/SiCNRs 1D vdWhs can be employed in nanoelectronics devices.
|
Received: 25 March 2021
Revised: 24 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011), the Youth Project of Scientific and Technological Research Program of Chongqing Education Commission, China (Grant Nos. KJQN202001207 and KJQN202101204), and the Fund from the Educational Commission of Hubei Province, China (Grant No. T201914). |
Corresponding Authors:
Xing-Yi Tan
E-mail: tanxy@sanxiau.edu.cn
|
Cite this article:
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华) Band alignment in SiC-based one-dimensional van der Waals homojunctions 2021 Chin. Phys. B 30 126102
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Mu Y, Lan J Q, Zhou X L and Chen Q F 2019 J. Appl. Phys. 125 204301 [3] An Y, Hou Y, Gong S, Wu R, Zhao C, Wang T, Jiao Z, Wang H and Liu W 2020 Phys. Rev. B 101 075416 [4] Gupta A, Sakthivel T and Seal S 2015 Prog. Mater. Sci. 73 44 [5] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292 [6] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033 [7] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [9] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [10] Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166 [11] Ren D H, Tan X Y, Zhang T and Zhang Y 2019 Chin. Phys. B 28 086104 [12] Lu P, Huang Q, Mukherjee A and Hsieh Y L 2011 J. Mater. Chem. 21 1005 [13] Zhu H L, Bai Y J, Liu R, Lun N, Qi Y X, Han F D and Bi J Q 2011 J. Mater. Chem. 21 13581 [14] Peled A and Lellouche J P 2012 J. Mater. Chem. 22 2069 [15] Sun X H, Li C P, Wong W K, Wong N B, Lee C S, Lee S T and Teo B K 2002 J. Am. Chem. Soc. 124 14464 [16] Pei L Z, Tang Y H, Chen Y W, Guo C, Li X X, Yuan Y and Zhang Y 2006 J. Appl. Phys. 99 114306 [17] Cui H, Gong L, Yang G Z, Sun Y, Chen J and Wang C X 2011 Phys. Chem. Chem. Phys. 13 985 [18] Miyamoto Y andYu B D 2002 Appl. Phys. Lett. 80 586 [19] Zhao M W, Xia Y Y, Li F, Zhang R Q and Lee S T 2005 Phys. Rev. B 71 085312 [20] Menon M, Richter E, Mavrandonakis A, Froudakis G and Andriotis A N 2004 Phys. Rev. B 69 115322 [21] Zhang Y, Huang H 2008 Comput. Mater. Sci. 43 664 [22] Zhang Y, Ichihashi T, Landree E, Nihey F and Iijima S 1999 Science 285 1719 [23] Bekaroglu E, Topsakal M, Cahangirov S and Ciraci S 2010 Phys. Rev. B 81 075433 [24] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453 [25] Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Yang J and Hou J G 2008 J. Chem. Phys. 129 174114 [26] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722 [27] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598 [28] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594 [29] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427 [30] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X 2017 Sci. Adv. 3 e1603113 [31] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042 [32] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [33] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Garcia de Arquer F P, Gatti F and Koppens F H L 2012 Nat. Nanotechnol. 7 363 [34] Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y and Duan X 2011 Nat. Commun. 2 579 [35] Zhang K, Zhang Y, Zhang T, Dong W, Wei T, Sun Y, Chen X, Shen G and Dai N 2015 Nano Res. 8 743 [36] Jariwala D, Marks T J and Hersam M C 2017 Nat. Mater. 16 170 [37] Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, Hisama K, Yotsumoto S, Ogamoto T, Arai H, Kobayashi Y, Zhang H, Hou B, Anisimov A, Maruyama M, Miyata Y, Okada S, Chiashi S, Li Y, Kong J, Kauppinen E I, Ikuhara Y, Suenaga K and Maruyama S 2020 Science 367 537 [38] Gong M, Zhang G P, Hu H H, Kou L, Dou K P and Shi X Q 2019 J. Mater. Chem. C 7 3829 [39] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P, Vej-Hansen U G, Lee M-E, Chill S T, Rasmussen F, Penazz G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M and Stokbro K 2020 J. Phys.:Condens. Matter 32 015901 [40] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [41] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635 [44] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|