Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126102    DOI: 10.1088/1674-1056/abfbd2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Band alignment in SiC-based one-dimensional van der Waals homojunctions

Xing-Yi Tan(谭兴毅)1,2,†, Lin-Jie Ding(丁林杰)1, and Da-Hua Ren(任达华)2
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China;
2 School of Information Engineering, Hubei Minzu University, Enshi 445000, China
Abstract  The density functional theory method is utilized to verify the electronic structures of SiC nanotubes (SiCNTs) and SiC nanoribbons (SiCNRs) one-dimensional (1D) van der Waals homojunctions (vdWh) under an applied axial strain and an external electric field. According to the calculated results, the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-II band alignment and robust electronic structures with different diameters or widths. Furthermore, the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-I band alignment, respectively, in a range of[-0.3, -0.1] V/Å and[0.1, 0.3] V/Å and change into metal when the electric field intensity is equal to or higher than 0.4 V/Å. Interestingly, the SiCNTs/SiCNRs 1D vdWhs have robust electronic structures under axial strain. These findings demonstrate theoretically that the SiCNTs/SiCNRs 1D vdWhs can be employed in nanoelectronics devices.
Keywords:  SiCNTs/SiCNRs one-dimensional (1D) van der Waals homojunctions (vdWh)      electronic structure      external electric field      axial strain  
Received:  25 March 2021      Revised:  24 April 2021      Accepted manuscript online:  27 April 2021
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011), the Youth Project of Scientific and Technological Research Program of Chongqing Education Commission, China (Grant Nos. KJQN202001207 and KJQN202101204), and the Fund from the Educational Commission of Hubei Province, China (Grant No. T201914).
Corresponding Authors:  Xing-Yi Tan     E-mail:  tanxy@sanxiau.edu.cn

Cite this article: 

Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华) Band alignment in SiC-based one-dimensional van der Waals homojunctions 2021 Chin. Phys. B 30 126102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Mu Y, Lan J Q, Zhou X L and Chen Q F 2019 J. Appl. Phys. 125 204301
[3] An Y, Hou Y, Gong S, Wu R, Zhao C, Wang T, Jiao Z, Wang H and Liu W 2020 Phys. Rev. B 101 075416
[4] Gupta A, Sakthivel T and Seal S 2015 Prog. Mater. Sci. 73 44
[5] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292
[6] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[7] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[9] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[10] Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
[11] Ren D H, Tan X Y, Zhang T and Zhang Y 2019 Chin. Phys. B 28 086104
[12] Lu P, Huang Q, Mukherjee A and Hsieh Y L 2011 J. Mater. Chem. 21 1005
[13] Zhu H L, Bai Y J, Liu R, Lun N, Qi Y X, Han F D and Bi J Q 2011 J. Mater. Chem. 21 13581
[14] Peled A and Lellouche J P 2012 J. Mater. Chem. 22 2069
[15] Sun X H, Li C P, Wong W K, Wong N B, Lee C S, Lee S T and Teo B K 2002 J. Am. Chem. Soc. 124 14464
[16] Pei L Z, Tang Y H, Chen Y W, Guo C, Li X X, Yuan Y and Zhang Y 2006 J. Appl. Phys. 99 114306
[17] Cui H, Gong L, Yang G Z, Sun Y, Chen J and Wang C X 2011 Phys. Chem. Chem. Phys. 13 985
[18] Miyamoto Y andYu B D 2002 Appl. Phys. Lett. 80 586
[19] Zhao M W, Xia Y Y, Li F, Zhang R Q and Lee S T 2005 Phys. Rev. B 71 085312
[20] Menon M, Richter E, Mavrandonakis A, Froudakis G and Andriotis A N 2004 Phys. Rev. B 69 115322
[21] Zhang Y, Huang H 2008 Comput. Mater. Sci. 43 664
[22] Zhang Y, Ichihashi T, Landree E, Nihey F and Iijima S 1999 Science 285 1719
[23] Bekaroglu E, Topsakal M, Cahangirov S and Ciraci S 2010 Phys. Rev. B 81 075433
[24] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[25] Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Yang J and Hou J G 2008 J. Chem. Phys. 129 174114
[26] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[27] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
[28] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594
[29] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
[30] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X 2017 Sci. Adv. 3 e1603113
[31] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
[32] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[33] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Garcia de Arquer F P, Gatti F and Koppens F H L 2012 Nat. Nanotechnol. 7 363
[34] Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y and Duan X 2011 Nat. Commun. 2 579
[35] Zhang K, Zhang Y, Zhang T, Dong W, Wei T, Sun Y, Chen X, Shen G and Dai N 2015 Nano Res. 8 743
[36] Jariwala D, Marks T J and Hersam M C 2017 Nat. Mater. 16 170
[37] Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, Hisama K, Yotsumoto S, Ogamoto T, Arai H, Kobayashi Y, Zhang H, Hou B, Anisimov A, Maruyama M, Miyata Y, Okada S, Chiashi S, Li Y, Kong J, Kauppinen E I, Ikuhara Y, Suenaga K and Maruyama S 2020 Science 367 537
[38] Gong M, Zhang G P, Hu H H, Kou L, Dou K P and Shi X Q 2019 J. Mater. Chem. C 7 3829
[39] Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P, Vej-Hansen U G, Lee M-E, Chill S T, Rasmussen F, Penazz G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M and Stokbro K 2020 J. Phys.:Condens. Matter 32 015901
[40] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[41] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[44] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[4] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[13] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[14] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!