Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126101    DOI: 10.1088/1674-1056/ac0794
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Actively tunable dual-broadband graphene-based terahertz metamaterial absorber

Dan Hu(胡丹)1,†, Tian-Hua Meng(孟田华)2, Hong-Yan Wang(王红燕)3, and Mai-Xia Fu(付麦霞)4
1 School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China;
2 Department of Physics and Electronics Science, Shanxi Datong University, Datong 037009, China;
3 School of Education Information Technology and Communication, Anyang Normal University, Anyang 455000, China;
4 College of Information Science and Engineering, Henan University of Technology, Key Laboratory of Grain Information Processing and Control, Ministry of Education, Zhengzhou 450001, China
Abstract  A tunable metamaterial absorber (MA) with dual-broadband and high absorption properties at terahertz (THz) frequencies is designed in this work. The MA consists of a periodic array of flower-like monolayer graphene patterns at top, a SiO2 dielectric spacer in middle, and a gold ground plane at the bottom. The simulation results demonstrate that the designed MA has two wide absorption bands with an absorption of over 90% in frequency ranges of 0.68 THz-1.63 THz and 3.34 THz-4.08 THz, and the corresponding relative bandwidths reach 82.3% and 20%, respectively. The peak absorptivity of the absorber can be dynamically controlled from less than 10% to nearly 100% by adjusting the graphene chemical potential from 0 eV to 0.9 eV. Furthermore, the designed absorber is polarization-insensitive and has good robustness to incident angles. Such a high-performance MA has broad application prospects in THz imaging, modulating, filtering, etc.
Keywords:  metamaterial      graphene      absorber      terahertz  
Received:  01 March 2021      Revised:  29 April 2021      Accepted manuscript online:  03 June 2021
PACS:  61.48.Gh (Structure of graphene)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504006 and 61805072) and the Key Scientific Research Project of Colleges and Universities in Henan Province, China (Grant No. 22A140001).
Corresponding Authors:  Dan Hu     E-mail:  tylzhd@163.com

Cite this article: 

Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞) Actively tunable dual-broadband graphene-based terahertz metamaterial absorber 2021 Chin. Phys. B 30 126101

[1] Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B 2011 Nature 470 369
[2] Ozbay E, Guven K and Aydin K 2007 J. Opt. A:Pure Appl. Opt. 9 S301
[3] Zhang X and Liu Z W 2008 Nat. Mater. 7 435
[4] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[5] Ergin T, Stenger N, Brenner P, Pendry J B and Wegener M 2010 Science 328 337
[6] Alitalo P and Tretyakova S 2009 Mater. Today 12 22
[7] Hu D, Wang H Y and Zhu Q F 2016 IEEE Photon. J. 8 5500608
[8] Watts C M, Liu X L and Padilla W J 2012 Adv. Mater. 24 OP98
[9] Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 033101
[10] Grant J, Carranza I E, Li C, McCrindle I J H, Gough J and Cumming D R S 2013 Laser Photon. Rev. 7 1043
[11] Liu N, Mesch M, Weiss T and Hentschel M 2010 Nano Lett. 10 2342
[12] Kim J, Han K and Hahn J W 2017 Sci. Rep. 7 6740
[13] Fan K B, Suen J Y, Liu X Y and Padilla W J 2017 Optica 4 601
[14] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[15] Hu D, Wang H Y, Zhang X W, Wang K X and Zhu Q F 2019 Sci. China-Inf. Sci. 62 069408
[16] Akselrod G M, Huang J N, Hoang T B, Bowen P T, Su L G, Smith D R and Mikkelsen M H 2015 Adv. Mater. 27 8028
[17] Novoselov K S, Geiml A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[18] Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749
[19] Mak K F, Ju L, Wang F and Heinz T F 2012 Solid State Commun. 152 1341
[20] Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017
[21] Xing R and Jian S S 2018 Opt. Laser Technol. 100 129
[22] Zhang J G, Tian J P and Li L 2018 IEEE Photon. J. 10 4800512
[23] Su Z P, Wang Y K, Luo X, Luo H, Zhang C, Li M X, Sang T and Yang G F 2018 Phys. Chem. Chem. Phys. 20 14357
[24] Yao G, Ling F R, Yue J, Luo C Y, Ji J and Yao J Q 2016 Opt. Express 24 1518
[25] Lin H, Ye X, Chen X F, Zhou Z G, Yi Z, Niu G, Yi Y G, Hua Y T, Hua J J and Xiao S Y 2019 Mater. Res. Express 6 045807
[26] Ke S L, Wang B, Huang H, Long H, Wang K and Lu P X 2015 Opt. Express 23 8888
[27] Barzegar-Parizi S, Ebrahimi A and Ghorbani K 2020 Opt. Laser Technol. 132 106483
[28] Ye L F, Chen X, Cai G X, Zhu J F, Liu N and Liu Q H 2018 Nanomaterials 8 562
[29] Mou NL, Sun SL, Dong HX, Dong SH, He Q, Zhou L and Zhang L 2018 Opt. Express 26 11728
[30] Huang X, He W, Yang F, Ran J, Gao B and Zhang W L 2018 Opt. Express 26 25558
[31] Li Y, Wu J, Wang C, Shen Z, Wu D, Wu N and Yang H 2019 Phys. Scr. 94 035703
[32] Wu S, Zha D, Miao L, He Y and Jiang J 2019 Phys. Scr. 94 105507
[33] Du X, Yan F, Wang W, Tan S, Zhang L, Bai Z, Zhou H and Hou Y 2020 Opt. Laser Technol. 132 106513
[34] Amin M, Farhat M and Bağci 2013 Opt. Express 21 29938
[35] Rahmanzadeh M, Rajabalipanah H and Abdolali A 2018 Appl. Opt. 57 959
[36] Daraeia O M, Goudarzi K and Bemani M 2020 Opt. Laser Technol. 122 105853
[37] Fu P, Liu F, Ren G J, Su F, Li D and Yao J Q 2018 Opt. Commun. 417 62
[38] Xu Z H, Wu D, Liu Y M, Liu C, Yu Z Y, Yu L and Ye H 2018 Nanoscale Res. Lett. 13 143
[39] Cai Y J and Xu K D 2018 Opt. Express 26 31693
[40] Cai Y J, Xu K D, Feng N X, Guo R R, Lin H J and Zhu J F 2019 Opt. Express 27 3101
[41] Guo Y B, Wang S Q, Zhou Y G, Chen C Y, Zhu J F, Wang R and Cai Y J 2019 J. Appl. Phys. 126 213103
[42] Zhao Y T, Wu B, Huang B J and Cheng Q 2017 Opt. Express 25 7161
[43] Qi L M, Liu C and Shah S M A 2019 Carbon 153 179
[44] Zhou Q H, Zha S, Liu P G, Liu C X, Bian L A, Zhang J H, Liu H Q and Ding L 2018 Materials 11 2409
[45] Xiong H, Ji Q, Bashir T and Yang F 2020 Opt. Express 28 13884
[46] Gao F, Zhu Z H, Xu W, Zhang J F, Guo C C, Liu K, Yuan X D and Qin S Q 2017 Opt. Express 25 9579
[47] Zhang Y, Li Y, Cao Y, Liu Y and Zhang H 2017 Opt. Commun. 382 281
[48] Yang J W, Zhu Z H, Zhang J F, Guo C C, Xu W, Liu K, Yuan X D and Qin S Q 2018 Sci. Rep. 8 3239
[49] Qi L M and Liu C 2019 Opt. Mater. Express 9 1298
[50] Nejat M and Nozhat N 2019 IEEE Trans. Nanotech. 18 684
[51] Hanson G W 2008 J. Appl. Phys. 103 064302
[52] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299
[53] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[54] Li J S, Yan D X and Sun J Z 2019 Opt. Mater. Express 9 2067
[55] Wang B X, Wang G Z and Wang L L 2016 Plasmonics 11 523
[56] Hu N, Wu F L, Bian L A, Liu H Q and Liu P G 2018 Opt. Mater. Express 8 3899
[57] Xiao D Y, Zhu M M, Sun L M, Zhao C, Wang Y R, Teo E H T, Hu F J and Tu L C 2019 ACS Appl. Mater. Inter. 11 43671
[58] Ma W, Chen H, Hou S, Huang Z, Huang Y, Xu S, Fan F and Chen Y 2019 ACS Appl. Mater. Inter. 11 25369
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[8] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[9] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[10] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[14] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[15] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
No Suggested Reading articles found!