CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Actively tunable dual-broadband graphene-based terahertz metamaterial absorber |
Dan Hu(胡丹)1,†, Tian-Hua Meng(孟田华)2, Hong-Yan Wang(王红燕)3, and Mai-Xia Fu(付麦霞)4 |
1 School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China; 2 Department of Physics and Electronics Science, Shanxi Datong University, Datong 037009, China; 3 School of Education Information Technology and Communication, Anyang Normal University, Anyang 455000, China; 4 College of Information Science and Engineering, Henan University of Technology, Key Laboratory of Grain Information Processing and Control, Ministry of Education, Zhengzhou 450001, China |
|
|
Abstract A tunable metamaterial absorber (MA) with dual-broadband and high absorption properties at terahertz (THz) frequencies is designed in this work. The MA consists of a periodic array of flower-like monolayer graphene patterns at top, a SiO2 dielectric spacer in middle, and a gold ground plane at the bottom. The simulation results demonstrate that the designed MA has two wide absorption bands with an absorption of over 90% in frequency ranges of 0.68 THz-1.63 THz and 3.34 THz-4.08 THz, and the corresponding relative bandwidths reach 82.3% and 20%, respectively. The peak absorptivity of the absorber can be dynamically controlled from less than 10% to nearly 100% by adjusting the graphene chemical potential from 0 eV to 0.9 eV. Furthermore, the designed absorber is polarization-insensitive and has good robustness to incident angles. Such a high-performance MA has broad application prospects in THz imaging, modulating, filtering, etc.
|
Received: 01 March 2021
Revised: 29 April 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504006 and 61805072) and the Key Scientific Research Project of Colleges and Universities in Henan Province, China (Grant No. 22A140001). |
Corresponding Authors:
Dan Hu
E-mail: tylzhd@163.com
|
Cite this article:
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞) Actively tunable dual-broadband graphene-based terahertz metamaterial absorber 2021 Chin. Phys. B 30 126101
|
[1] Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B 2011 Nature 470 369 [2] Ozbay E, Guven K and Aydin K 2007 J. Opt. A:Pure Appl. Opt. 9 S301 [3] Zhang X and Liu Z W 2008 Nat. Mater. 7 435 [4] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534 [5] Ergin T, Stenger N, Brenner P, Pendry J B and Wegener M 2010 Science 328 337 [6] Alitalo P and Tretyakova S 2009 Mater. Today 12 22 [7] Hu D, Wang H Y and Zhu Q F 2016 IEEE Photon. J. 8 5500608 [8] Watts C M, Liu X L and Padilla W J 2012 Adv. Mater. 24 OP98 [9] Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 033101 [10] Grant J, Carranza I E, Li C, McCrindle I J H, Gough J and Cumming D R S 2013 Laser Photon. Rev. 7 1043 [11] Liu N, Mesch M, Weiss T and Hentschel M 2010 Nano Lett. 10 2342 [12] Kim J, Han K and Hahn J W 2017 Sci. Rep. 7 6740 [13] Fan K B, Suen J Y, Liu X Y and Padilla W J 2017 Optica 4 601 [14] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 [15] Hu D, Wang H Y, Zhang X W, Wang K X and Zhu Q F 2019 Sci. China-Inf. Sci. 62 069408 [16] Akselrod G M, Huang J N, Hoang T B, Bowen P T, Su L G, Smith D R and Mikkelsen M H 2015 Adv. Mater. 27 8028 [17] Novoselov K S, Geiml A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [18] Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749 [19] Mak K F, Ju L, Wang F and Heinz T F 2012 Solid State Commun. 152 1341 [20] Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017 [21] Xing R and Jian S S 2018 Opt. Laser Technol. 100 129 [22] Zhang J G, Tian J P and Li L 2018 IEEE Photon. J. 10 4800512 [23] Su Z P, Wang Y K, Luo X, Luo H, Zhang C, Li M X, Sang T and Yang G F 2018 Phys. Chem. Chem. Phys. 20 14357 [24] Yao G, Ling F R, Yue J, Luo C Y, Ji J and Yao J Q 2016 Opt. Express 24 1518 [25] Lin H, Ye X, Chen X F, Zhou Z G, Yi Z, Niu G, Yi Y G, Hua Y T, Hua J J and Xiao S Y 2019 Mater. Res. Express 6 045807 [26] Ke S L, Wang B, Huang H, Long H, Wang K and Lu P X 2015 Opt. Express 23 8888 [27] Barzegar-Parizi S, Ebrahimi A and Ghorbani K 2020 Opt. Laser Technol. 132 106483 [28] Ye L F, Chen X, Cai G X, Zhu J F, Liu N and Liu Q H 2018 Nanomaterials 8 562 [29] Mou NL, Sun SL, Dong HX, Dong SH, He Q, Zhou L and Zhang L 2018 Opt. Express 26 11728 [30] Huang X, He W, Yang F, Ran J, Gao B and Zhang W L 2018 Opt. Express 26 25558 [31] Li Y, Wu J, Wang C, Shen Z, Wu D, Wu N and Yang H 2019 Phys. Scr. 94 035703 [32] Wu S, Zha D, Miao L, He Y and Jiang J 2019 Phys. Scr. 94 105507 [33] Du X, Yan F, Wang W, Tan S, Zhang L, Bai Z, Zhou H and Hou Y 2020 Opt. Laser Technol. 132 106513 [34] Amin M, Farhat M and Bağci 2013 Opt. Express 21 29938 [35] Rahmanzadeh M, Rajabalipanah H and Abdolali A 2018 Appl. Opt. 57 959 [36] Daraeia O M, Goudarzi K and Bemani M 2020 Opt. Laser Technol. 122 105853 [37] Fu P, Liu F, Ren G J, Su F, Li D and Yao J Q 2018 Opt. Commun. 417 62 [38] Xu Z H, Wu D, Liu Y M, Liu C, Yu Z Y, Yu L and Ye H 2018 Nanoscale Res. Lett. 13 143 [39] Cai Y J and Xu K D 2018 Opt. Express 26 31693 [40] Cai Y J, Xu K D, Feng N X, Guo R R, Lin H J and Zhu J F 2019 Opt. Express 27 3101 [41] Guo Y B, Wang S Q, Zhou Y G, Chen C Y, Zhu J F, Wang R and Cai Y J 2019 J. Appl. Phys. 126 213103 [42] Zhao Y T, Wu B, Huang B J and Cheng Q 2017 Opt. Express 25 7161 [43] Qi L M, Liu C and Shah S M A 2019 Carbon 153 179 [44] Zhou Q H, Zha S, Liu P G, Liu C X, Bian L A, Zhang J H, Liu H Q and Ding L 2018 Materials 11 2409 [45] Xiong H, Ji Q, Bashir T and Yang F 2020 Opt. Express 28 13884 [46] Gao F, Zhu Z H, Xu W, Zhang J F, Guo C C, Liu K, Yuan X D and Qin S Q 2017 Opt. Express 25 9579 [47] Zhang Y, Li Y, Cao Y, Liu Y and Zhang H 2017 Opt. Commun. 382 281 [48] Yang J W, Zhu Z H, Zhang J F, Guo C C, Xu W, Liu K, Yuan X D and Qin S Q 2018 Sci. Rep. 8 3239 [49] Qi L M and Liu C 2019 Opt. Mater. Express 9 1298 [50] Nejat M and Nozhat N 2019 IEEE Trans. Nanotech. 18 684 [51] Hanson G W 2008 J. Appl. Phys. 103 064302 [52] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299 [53] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617 [54] Li J S, Yan D X and Sun J Z 2019 Opt. Mater. Express 9 2067 [55] Wang B X, Wang G Z and Wang L L 2016 Plasmonics 11 523 [56] Hu N, Wu F L, Bian L A, Liu H Q and Liu P G 2018 Opt. Mater. Express 8 3899 [57] Xiao D Y, Zhu M M, Sun L M, Zhao C, Wang Y R, Teo E H T, Hu F J and Tu L C 2019 ACS Appl. Mater. Inter. 11 43671 [58] Ma W, Chen H, Hou S, Huang Z, Huang Y, Xu S, Fan F and Chen Y 2019 ACS Appl. Mater. Inter. 11 25369 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|