CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Superconductivity in an intermetallic oxide Hf3Pt4Ge2O |
Chengchao Xu(徐程超)1,2, Hong Wang(王鸿)1,2, Huanfang Tian(田焕芳)1, Youguo Shi(石友国)1, Zi-An Li(李子安)1, Ruijuan Xiao(肖睿娟)1, Honglong Shi(施洪龙)3, Huaixin Yang(杨槐馨)1, and Jianqi Li(李建奇)1,2,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Science, Minzu University, Beijing 100081, China |
|
|
Abstract Discovery of a new superconductor with distinct crystal structure and chemistry often provides great opportunity for further expanding superconductor material base, and also leads to better understanding of superconductivity mechanisms. Here, we report the discovery of superconductivity in a new intermetallic oxide Hf3Pt4Ge2O synthesized through a solid-state reaction. The Hf3Pt4Ge2O crystallizes in a cubic structure (space group Fm-3m) with a lattice constant of a = 1.241 nm, whose stoichiometry and atomic structure are determined by electron microscopy and x-ray diffraction techniques. The superconductivity at 4.1 K and type-Ⅱ superconducting nature are evidenced by the electrical resistivity, magnetic susceptibility, and specific heat measurements. The intermetallic oxide Hf3Pt4Ge2O system demonstrates an intriguing structural feature that foreign oxygen atoms can be accommodated in the interstitial sites of the ternary intermetallic framework. We also successfully synthesized a series of Hf3Pt4Ge2O1+δ (-0.25 ≤ δ ≤ 0.5), and found the δ-dependent superconducting transition temperature Tc. The atomic structure and the electronic structure are also substantiated by first-principles calculations. Our results present an entirely new family of superconductors with distinct structural and chemical characteristics, and could attract research interest in further finding new superconductors and exploring novel physics pertaining to the 5d-electron in these intermetallic compound systems.
|
Received: 08 April 2021
Revised: 19 April 2021
Accepted manuscript online: 26 April 2021
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.Bt
|
(Thermodynamic properties)
|
|
74.25.F-
|
(Transport properties)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300303, 2017YFA0504703, 2017YFA0302904, and 2017YFA0303000), the National Basic Research Program of China (Grant No. 2015CB921304), the National Natural Science Foundation of China (Grant Nos. 11774391, 11774403, and 11804381), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB07020000), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. ZDKYYQ20170002), and the China Postdoctoral Science Foundation (Grant No. BX20180351). |
Corresponding Authors:
Jianqi Li
E-mail: ljq@iphy.ac.cn
|
Cite this article:
Chengchao Xu(徐程超), Hong Wang(王鸿), Huanfang Tian(田焕芳), Youguo Shi(石友国), Zi-An Li(李子安), Ruijuan Xiao(肖睿娟), Honglong Shi(施洪龙), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇) Superconductivity in an intermetallic oxide Hf3Pt4Ge2O 2021 Chin. Phys. B 30 077403
|
[1] Onnes H K 1911 Comm. Phys. Lab. Univ. Leiden 28 120 [2] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schaefer H 1979 Phys. Rev. Lett. 43 1892 [3] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 [4] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908 [5] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [6] Matthias B T 1970 The Empirical Approach to Superconductivity (Boston: Springer) [7] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544 [8] Mao Y Y, Li J, Huan Y L, Yuan J, Li Z A, Chai K, Ma M W, Ni S L, Tian J P, Liu S B, Zhou H X, Zhou F, Li J Q, Zhang G M, Jin K, Dong X L and Zhao Z X. 2018 Chin. Phys. Lett. 35 057402 [9] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X 5 011013 [10] Gumeniuk R, Schnelle W, Rosner H, Nicklas M, Leithe J A and Grin Y 2008 Phys. Rev. Lett. 100 017002 [11] Zang J W, Zhang J, Zhu Z H, Ding Z F, Huang K, Peng X R, Hillier A D and Shu L 2019 Chin. Phys. Lett. 36 107402 [12] Sheng Q, Zhang J, Huang K, Ding Z, Peng X, Tan C and Shu L 2017 Chin. Phys. B 26 057401 [13] Zhang Y, Wang B, Xiao Z, Lu Y, Kamiya T, Uwatoko Y, Kageyama H and Hosono H 2017 npj Quantum Materials 2 45 [14] Wang B, Zhang Y Q, Xu S X, Ishigaki K, Matsubayashi K, Cheng J G, Hosono H and Uwatoko Y. 2019 Chin. Phys. B 28 107401 [15] Hamamoto S and Kitagawa J 2018 Mater. Res. Express 5 106001 [16] Ma K, Lago J and Rohr F O V 2019 J. Alloys Compd. 796 287 [17] Liu Z, Wu W, Zhao Z, Zhao H, Cui J, Shan P, Zhang J, Yang C, Sun P, Wei Y, Li S, Zhao J, Sui Y, Cheng J, Lu L, Luo J and Liu G 2019 Phys. Rev. B 99 184509 [18] Larson A C and Dreele R B V 2000 Los Alamos National Laboratory Report LAUR 86 [19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [21] Nagata Y, Sodeyama K, Yashiro S, Sasaki H, Samata H, Uchida T and Lan M D 1998 J. Alloys Compd. 281 112 [22] Bende D, Wagner F R, Sichevych O and Grin Y 2017 Angew. Chem. Int. Ed. 56 1313 [23] Brandt E H 2004 Physica C 404 74 [24] Helfand E and Werthamer N R 1966 Phys. Rev. 147 288 [25] Xiang T 2006 d-Wave Superconductivity (Beijing: Science Press) pp. 55-56 (in Chinese) [26] Li S, Liu X Y, Anand V and Bing Lv 2018 New. J. Phys. 20 aa9ccd [27] Xing J, Lin H, Li Y F, Li S, Zhu X Y, Yang H and Wen H H. 2016 Phys. Rev. B 93 104520 [28] Hafiez M A, Aswartham S, Wurmehl S, Grinenko V, Hess C, Drechsler S L, Johnston S, Wolter A U B, Büchner B, Rosner H and Boeri L. 2012 Phys. Rev. B 85 134533 [29] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002 [30] McMillan W L 1968 Phys. Rev. 167 331 [31] Wang B and Ohgushi K 2013 Sci. Rep. 3 3381 [32] Hein R A 1956 Phys. Rev. 102 1511 [33] Klimczuk T, Wang C H, Gofryk K, Ronning F, Winterlik J, Fecher G H, Griveau J C, Colineau E, Felser C, Thompson J D, Safarik D J and Cava R J 2012 Phys. Rev. B 85 174505 [34] Matthias B T, Geballe T H and Corenzwit E 1954 Phys. Rev. 95 143 [35] Matthias B T, Geballe T H, Longinotti L D, Corenzwit E, Hull G W, Willens R H and Maita J P 1967 Science 156 645 [36] Tanigaki K, Ebbesen T W, Saito S, Mizuki J, Tsai J S, Kubo Y and Kuroshima S 1991 Nature 352 222 [37] Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck W F, Siegrist T, Batlogg B, Dover R B V, Felder R J, Mizuhashi K, Lee J O, Eisaki H and Uchida S 1994 Nature 367 252 [38] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [39] Cava R J 2000 J. Am. Ceram. Soc. 83 5 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|