Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117107    DOI: 10.1088/1674-1056/abfa06
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of electronic structure and magnetic properties of Sr3Fe2O5 oxide

Mavlanjan Rahman(买吾兰江·热合曼) and Jiuyang He(何久洋)
School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
Abstract  We investigate the electronic structure and magnetic properties of layered compound Sr3Fe2O5 based on first-principles calculations in the framework of density functional theory with GGA+U method. Under high pressure, the ladder-type layered structure of Sr3Fe2O5 is transformed into the infinite layered structure accompanied by a transition from G-type anti-ferromagnetic (AFM) insulator to ferromagnetic (FM) metal and a spin transition from S=2 to S=1. We reproduce these transformations in our calculations and give a clear physical interpretation.
Keywords:  Sr3Fe2O5      first-principles calculation      electronic structure      magnetism  
Received:  12 February 2021      Revised:  16 April 2021      Accepted manuscript online:  21 April 2021
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  91.60.Pn (Magnetic and electrical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11964039) and Xinjiang “Hundred Young Doctors Introduction Program” Project, China (Grant No. 3010010111).
Corresponding Authors:  Mavlanjan Rahman     E-mail:  mavlanr@sina.com

Cite this article: 

Mavlanjan Rahman(买吾兰江·热合曼) and Jiuyang He(何久洋) First-principles study of electronic structure and magnetic properties of Sr3Fe2O5 oxide 2021 Chin. Phys. B 30 117107

[1] Schaak R E and Mallouk T E 2002 Chem. Mater. 14 1455
[2] Sanjaya R K G and Josepha E, Choi J, Zhang J X and Wiley J B 2011 Adv. Mater. 23 442
[3] Long C B, and Li M M 2013 Dalton Trans. 42 3561
[4] Liu K, Fan H Q, Ren P R and Yang C 2011 J. Alloys Compd. 509 1901
[5] Sato M, Watanabe J and Uematsu K 1993 J. Solid State Chem. 107 460
[6] Kodenkandath T A, Lalena J N, Zhou W L, Carpenter E E, Sangregorio C, Falster A U, Simmons W B, O'Connor C J and Wiley J B 1999 J. Am. Chem. Soc. 121 10743
[7] Tassel C, Kang J, Lee C, Hernandez O, Qiu Y, Paulus W, Collet E, Lake B, Guidi T, Whangbo M H, Ritter C, Kageyama H and Lee S H 2010 Phys. Rev. Lett. 105 167205
[8] Siegrist T, Zahurak S M, Murphy D W and Roth R S 1988 Nature 334 231
[9] Tokura Y, Koshihara S, Arima T, Takagi H, Ishibashi S, Ido T and Uchida S 1990 Phys. Rev. B 41 11657
[10] Takano M, Takeda Y, Okada H, Miyamoto M and Kusaka T 1989 Phys. C 159 375
[11] Salvador P A, Doan T D, Mercey B and Raveau B 1998 Chem. Mater. 10 2592
[12] Crespin M, Levitz P and Gatineau L 1983 Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 79 1181
[13] Tsujimoto Y, Tassel C, Hayashi N, Watanabe1 T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C and Paulus W 2007 Nature 450 1062
[14] Xiang H J, Wei S H and Whangbo M H 2008 Phys. Rev. Lett. 100 167207
[15] Pruneda J M, Íñiguez J, Canadell E, Kageyama H and Takano M 2008 Phys. Rev. B 78 115101
[16] Kawakami T, Tsujimoto Y, Kageyama H, Chen X Q, Fu C L, Tassel C, Kitada A, Suto S, Hirama K, Sekiya Y, Makino Y, Okada T, Yagi T, Hayashi N, Yoshimura K, Nasu S, Podloucky R and Takano M 2009 Nat. Chem. 1 371
[17] Retuerto M, Villacorta J F, Lope M M J, Díaz F M T and Alonso J A 2011 Inorg. Chem. 50 10929
[18] Seinberg L, Yamamoto T, Tassel C, Kobayashi Y, Hayashi N, Kitada A, Sumida Y, Watanabe T, Nishi M, Ohoyama K, Yoshimura K, Takano M, Paulus W, and Kageyama H 2011 Inorg. Chem. 50 3988
[19] Denis R F, Burr S J, McGrrady J E, Gianolio D, Cibin G and Hayward M A 2013 J. Am. Chem. Soc. 135 1838
[20] Yamamoto T, Tassel C, Kobayashi Y, Kawakami T, Okada T, Yagi T, Yoshida H, Kamatani T, Watanabe Y, Kikegawa T, Takano M, Yoshimura K and Kageyama H 2011 J. Am. Chem. Soc. 133 6036
[21] Kageyama H, Watanabe T, Tsujimoto Y, KitadaA, Sumida Y, Kanamori K, Yoshimura K, Hayashi N, Muranaka S, Takano M, Ceretti M, Paulus W, Ritter C and André G 2008 Angew. Chem., Int. Ed. 47 5740
[22] Jia T, Wu H, Zhang X L, Liu T, Zeng Z and Lin H Q 2013 EPL 102 67004
[23] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys. Condens. Matter 21 395502
[24] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Rahman M, Nie Y Z and Guo G H 2013 Inorg. Chem. 52 12529
[27] Goodenough J B, Wold A, Arnott R J and Menyuk N 1961 Phys. Rev. 124 373
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[11] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[12] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[13] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
No Suggested Reading articles found!