CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of electronic structure and magnetic properties of Sr3Fe2O5 oxide |
Mavlanjan Rahman(买吾兰江·热合曼)† and Jiuyang He(何久洋) |
School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China |
|
|
Abstract We investigate the electronic structure and magnetic properties of layered compound Sr3Fe2O5 based on first-principles calculations in the framework of density functional theory with GGA+U method. Under high pressure, the ladder-type layered structure of Sr3Fe2O5 is transformed into the infinite layered structure accompanied by a transition from G-type anti-ferromagnetic (AFM) insulator to ferromagnetic (FM) metal and a spin transition from S=2 to S=1. We reproduce these transformations in our calculations and give a clear physical interpretation.
|
Received: 12 February 2021
Revised: 16 April 2021
Accepted manuscript online: 21 April 2021
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
91.60.Pn
|
(Magnetic and electrical properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11964039) and Xinjiang “Hundred Young Doctors Introduction Program” Project, China (Grant No. 3010010111). |
Corresponding Authors:
Mavlanjan Rahman
E-mail: mavlanr@sina.com
|
Cite this article:
Mavlanjan Rahman(买吾兰江·热合曼) and Jiuyang He(何久洋) First-principles study of electronic structure and magnetic properties of Sr3Fe2O5 oxide 2021 Chin. Phys. B 30 117107
|
[1] Schaak R E and Mallouk T E 2002 Chem. Mater. 14 1455 [2] Sanjaya R K G and Josepha E, Choi J, Zhang J X and Wiley J B 2011 Adv. Mater. 23 442 [3] Long C B, and Li M M 2013 Dalton Trans. 42 3561 [4] Liu K, Fan H Q, Ren P R and Yang C 2011 J. Alloys Compd. 509 1901 [5] Sato M, Watanabe J and Uematsu K 1993 J. Solid State Chem. 107 460 [6] Kodenkandath T A, Lalena J N, Zhou W L, Carpenter E E, Sangregorio C, Falster A U, Simmons W B, O'Connor C J and Wiley J B 1999 J. Am. Chem. Soc. 121 10743 [7] Tassel C, Kang J, Lee C, Hernandez O, Qiu Y, Paulus W, Collet E, Lake B, Guidi T, Whangbo M H, Ritter C, Kageyama H and Lee S H 2010 Phys. Rev. Lett. 105 167205 [8] Siegrist T, Zahurak S M, Murphy D W and Roth R S 1988 Nature 334 231 [9] Tokura Y, Koshihara S, Arima T, Takagi H, Ishibashi S, Ido T and Uchida S 1990 Phys. Rev. B 41 11657 [10] Takano M, Takeda Y, Okada H, Miyamoto M and Kusaka T 1989 Phys. C 159 375 [11] Salvador P A, Doan T D, Mercey B and Raveau B 1998 Chem. Mater. 10 2592 [12] Crespin M, Levitz P and Gatineau L 1983 Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 79 1181 [13] Tsujimoto Y, Tassel C, Hayashi N, Watanabe1 T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C and Paulus W 2007 Nature 450 1062 [14] Xiang H J, Wei S H and Whangbo M H 2008 Phys. Rev. Lett. 100 167207 [15] Pruneda J M, Íñiguez J, Canadell E, Kageyama H and Takano M 2008 Phys. Rev. B 78 115101 [16] Kawakami T, Tsujimoto Y, Kageyama H, Chen X Q, Fu C L, Tassel C, Kitada A, Suto S, Hirama K, Sekiya Y, Makino Y, Okada T, Yagi T, Hayashi N, Yoshimura K, Nasu S, Podloucky R and Takano M 2009 Nat. Chem. 1 371 [17] Retuerto M, Villacorta J F, Lope M M J, Díaz F M T and Alonso J A 2011 Inorg. Chem. 50 10929 [18] Seinberg L, Yamamoto T, Tassel C, Kobayashi Y, Hayashi N, Kitada A, Sumida Y, Watanabe T, Nishi M, Ohoyama K, Yoshimura K, Takano M, Paulus W, and Kageyama H 2011 Inorg. Chem. 50 3988 [19] Denis R F, Burr S J, McGrrady J E, Gianolio D, Cibin G and Hayward M A 2013 J. Am. Chem. Soc. 135 1838 [20] Yamamoto T, Tassel C, Kobayashi Y, Kawakami T, Okada T, Yagi T, Yoshida H, Kamatani T, Watanabe Y, Kikegawa T, Takano M, Yoshimura K and Kageyama H 2011 J. Am. Chem. Soc. 133 6036 [21] Kageyama H, Watanabe T, Tsujimoto Y, KitadaA, Sumida Y, Kanamori K, Yoshimura K, Hayashi N, Muranaka S, Takano M, Ceretti M, Paulus W, Ritter C and André G 2008 Angew. Chem., Int. Ed. 47 5740 [22] Jia T, Wu H, Zhang X L, Liu T, Zeng Z and Lin H Q 2013 EPL 102 67004 [23] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys. Condens. Matter 21 395502 [24] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [26] Rahman M, Nie Y Z and Guo G H 2013 Inorg. Chem. 52 12529 [27] Goodenough J B, Wold A, Arnott R J and Menyuk N 1961 Phys. Rev. 124 373 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|