Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂)1, Xiaojie Chen(陈晓洁)2, and Qing Liang(梁清)1,†
1 Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 2 Department of Industrial Automation, Guangdong Polytechnic College, Zhaoqing 526100, China
Abstract Spectrin, the principal protein of the cytoskeleton of erythrocyte, plays a crucial role in the stability and flexibility of the plasma membrane of erythrocyte. In this work, we investigate the interactions between spectrins and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. We focus on the preference of spectrins with different lipids, the effects of the anionic lipids and the residue mutation on the interactions between spectrins and the lipid bilayers. The results indicate that spectrins prefer to contact with phosphatidylethanolamine (PE) lipids rather than with phosphatidylcholine (PC) lipids, and tend to contact with the liquid-disordered (Ld) domains enriched in unsaturated PE. Additionally, the anionic lipids, which show specific interaction with the positively charged or polar amino acids on the surface of the spectrins, can enhance the attraction between the spectrins and lipid domains. The mutation leads to the decrease of the structural stability of spectrins and increases the curvature of the lipid bilayer. This work provides some theoretical insights into understanding the erythrocyte structure and the mechanism of some blood diseases.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674287) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A040009).
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清) Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers 2021 Chin. Phys. B 30 068701
[1] Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K and Walter P 2014 Molecular Biology of the Cell, 6th edn. (New York, NY: Garland Science) pp. 1244-1245 [2] Nigra A D, Casale C H and Santander V S 2020 Cell. Mol. Life Sci.77 1681 [3] Lux S E 2016 Blood127 187 [4] Pan L, Yan R, Li W and Xu K 2018 Cell Rep.22 1151 [5] Dupire J, Socol M and Viallat A 2012 Proc. Natl. Acad. Sci. USA109 20808 [6] Manno S, Takakuwa Y and Mohandas N 2002 Proc. Natl. Acad. Sci. USA99 1943 [7] Czogalla A, Grzymajlo K, Jezierski A and Sikorski A F 2008 Biochim. Biophys. Acta, Biomembr.1778 2612 [8] Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska D M, Grochowalska R, Heger E and Sikorski A F 2014 Biochim. Biophys. Acta, Biomembr.1838 620 [9] Li J, Lykotrafitis G, Dao M and Suresh S 2007 Proc. Natl. Acad. Sci. USA104 4937 [10] Hoore M, Yaya F, Podgorski T, Wagner C, Gompper G and Fedosov D A 2018 Soft Matter14 6278 [11] Mohandas N and Gallagher P G 2008 Blood112 3939 [12] Ipsaro J J, Harper S L, Messick T E, Marmorstein R, Mondragón A and Speicher D W 2010 Blood115 4843 [13] Bignone P A and Baines A J 2003 Biochem. J.374 613 [14] Salomao M, An X, Guo X, Gratzer W B, Mohandas N and Baines A J 2006 Proc. Natl. Acad. Sci. USA103 643 [15] Harper S L, Sriswasdi S, Tang H Y, Gaetani M, Gallagher P G and Speicher D W 2013 Blood122 3045 [16] Da Costa L, Galimand J, Fenneteau O and Mohandas N 2013 Blood Rev.27 167 [17] Delaunay J 2007 Blood Rev.21 1 [18] Li H and Lykotrafitis G 2015 Phys. Rev. E92 012715 [19] Li H, Papageorgiou D P, Chang H Y, Lu L, Yang J and Deng Y 2018 Biosensors8 76 [20] Li H, Lu L, Li X, Buffet P A, Dao M, Karniadakis G E and Suresh S 2018 Proc. Natl. Acad. Sci. USA115 9574 [21] Zhang R, Zhang C, Zhao Q and Li D 2013 Sci. China: Life Sci.56 1076 [22] Nicolas G, Pedroni S, Fournier C, Gautero H, Craescu C, Dhermy D and Lecomte M C 1998 Biochem. J.332 81 [23] De Vecchis D, Reithmeier R A and Kalli A C 2019 Biophys. J.117 1364 [24] Yawata Y 2003 Cell Membrane: the Red Blood Cell as a Model (Weinheim, Germany: Wiley-VCH) pp. 27-32 [25] Dumitru A C, Poncin M A, Conrard L, Dufrêne Y F, Tyteca D and Alsteens D 2018 Nanoscale Horiz3 293 [26] Corradi V, Sejdiu B I, Mesa-Galloso H, Abdizadeh H, Noskov S Y, Marrink S J and Tieleman D P 2019 Chem. Rev.119 5775 [27] Bennett V and Healy J 2009 Cold Spring Harbor Perspect. Biol.1 a003012 [28] Civenni G, Test S T, Brodbeck U and Bütikofer P 1998 Blood91 1784 [29] Lorenzo D N 2020 Cytoskeleton77 129 [30] Kalli A C and Reithmeier R A 2018 PLoS Comput. Biol.14 e1006284 [31] An X, Debnath G, Guo X, Liu S, Lux S E, Baines A, Gratzer W and Mohandas N 2005 Biochemistry44 10681 [32] Smith A S, Nowak R B, Zhou S, Giannetto M, Gokhin D S, Papoin J, Ghiran I C, Blanc L, Wan J and Fowler V M 2018 Proc. Natl. Acad. Sci. USA115 E4377 [33] Li H, Zhang Y, Ha V and Lykotrafitis G 2016 Soft Matter12 3643 [34] Campanella M E, Chu H and Low P S 2005 Proc. Natl. Acad. Sci. USA102 2402 [35] Jin Y, Liang Q and Tieleman D P 2020 J. Phys. Chem. B124 3054 [36] Kapus A and Janmey P 2013 Compr. Physiol.3 1231 [37] Peng Z, Li X, Pivkin I V, Dao M, Karniadakis G E and Suresh S 2013 Proc. Natl. Acad. Sci. USA110 13356 [38] Grzybek M, Chorzalska A, Bok E, Hryniewicz-Jankowska A, Czogalla A, Diakowski W and Sikorski A F 2006 Chem. Phys. Lipids141 133 [39] Smith J E 1987 Vet. Pathol.24 471 [40] Boguslawska D M, Machnicka B, Hryniewicz-Jankowska A and Czogalla A 2014 Cell. Mol. Biol. Lett.19 158 [41] Wolny M, Grzybek M, Bok E, Chorzalska A, Lenoir M, Czogalla A, Adamczyk K, Kolondra A, Diakowski W, Overduin M and Sikorski A F 2011 PLoS One6 e21538 [42] Hryniewicz-Jankowska A, Bok E, Dubielecka P, Chorzalska A, Diakowski W, Jezierski A, Lisowski M and Sikorski A F 2004 Biochem. J.382 677 [43] Diakowski W, Prychidny A, ŚWistak M, Nietubyć M, BialKowska K, Szopa J and Sikorski A F 1999 Biochem. J.338 83 [44] Diakowski W, Ozimek L, Bielska E, Bem S, Langner M and Sikorski A F 2006 Biochim. Biophys. Acta, Biomembr.1758 4 [45] Shukla S, Jin R, Robustelli J, Zimmerman Z E and Baumgart T 2019 Biophys. J.117 962 [46] Li Z, Venable R M, Rogers L A, Murray D and Pastor R W 2009 Biophys. J.97 155 [47] Mitra M, Patra M and Chakrabarti A 2015 Eur. Biophys. J.44 635 [48] Rodgers W and Glaser M 1991 Proc. Natl. Acad. Sci. USA88 1364 [49] Head B P, Patel H H and Insel P A 2014 Biochim. Biophys. Acta, Biomembr.1838 532 [50] Ciana A, Achilli C, Balduini C and Minetti G 2011 Biochim. Biophys. Acta, Biomembr.1808 183 [51] Kamata K, Manno S, Ozaki M and Takakuwa Y 2008 Am. J. Hematol.83 371 [52] Ciana A, Achilli C and Minetti G 2014 Mol. Membr. Biol.31 47 [53] Sikder M K U, Stone K A, Kumar P B S and Laradji M 2014 J. Chem. Phys.141 054902 [54] Li H and Lykotrafitis G 2014 Biophys. J.107 642 [55] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and De Vries A H 2007 J. Phys. Chem. B111 7812 [56] Marrink S J and Tieleman D P 2013 Chem. Soc. Rev.42 6801 [57] Marrink S J, De Vries A H and Mark A E 2004 J. Phys. Chem. B108 750 [58] Lupyan D, Mezei M, Logothetis D E and Osman R 2010 Biophys. J.98 240 [59] Schmidt M R, Stansfeld P J, Tucker S J and Sansom M S P 2013 Biochemistry52 279 [60] Chen X J and Liang Q 2017 Chin. Phys. B26 048701 [61] Wassenaar T A, Ingólfsson H I, Böckmann R A, Tieleman D P and Marrink S J 2015 J. Chem. Theory Comput.11 2144 [62] Marrink S J, Corradi V, Souza P C T, Ingólfsson H I, Tieleman D P and Sansom M S P 2019 Chem. Rev.119 6184 [63] Li W, Lin Z, Yuan B and Yang K 2020 Chin. Phys. B29 128701 [64] Liang Y R and Liang Q 2019 Acta Phys. Sin.68 028701 (in Chinese) [65] Ding H M, Yin Y W, Sheng Y J and Ma Y Q 2021 Chin. Phys. Lett.38 018701 [66] Corradi V, Sejdiu B I, Mesa-Galloso H, Abdizadeh H, Noskov S Y, Marrink S J and Tieleman D P 2019 Chem. Rev.119 5775 [67] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys.126 014101 [68] Parrinello M and Rahman A 1981 J. Appl. Phys.52 7182 [69] Martyna G J, Tobias D J and Klein M L 1994 J. Chem. Phys.101 4177 [70] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics14 33 [71] Wu Q Y and Liang Q 2014 Langmuir30 1116
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Design and high-power test of 800-kW UHF klystron for CEPC Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[15]
Synchronization of nanowire-based spin Hall nano-oscillators Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.