CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Oxidation degree dependent adsorption of ssDNA onto graphene-based surface |
Huishu Ma(马慧姝)1,2, Jige Chen(陈济舸)1,4, Haiping Fang(方海平)3,4, and Xiaoling Lei(雷晓玲)3,† |
1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Department of Physics, East China University of Science and Technology, Shanghai 200237, China; 4 Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China |
|
|
Abstract DNA/GO composite plays a significant role in the research field of biotechnology and nanotechnology, and attracts a great deal of interest. However, it is still unclear how the oxidation degree of the graphene-based surface affects the adsorption process of single-strand DNA (ssDNA). In this paper, based on the molecular dynamics simulations, we find that ssDNA molecule is absorbed on the GO surface in the most stable state with the oxidation degree around 15%. The microscopic mechanism is attributed to the van Der Walls and the electrostatic interactions between the ssDNA molecule and the graphene-based surface, which is accompanied with the π-π stacking and hydrogen bond formation. The number of π-π stacking between ssDNA and GO reaches the maximum value when the oxidation degree is around 15% among all the GO surfaces. Our simulation results also reveal the coexistence of stretched and curved configurations as well as the adsorption orientation of ssDNA on the GO surface. Furthermore, it is found that the absorbed ssDNA molecules are more likely to move on the graphene-based surface of low oxidation degree, especially on pristine graphene. Our work provides the physics picture of ssDNA's physisorption dynamics onto graphene-based surface and it is helpful in designing DNA/GO nanomaterials.
|
Received: 07 January 2021
Revised: 04 March 2021
Accepted manuscript online: 23 March 2021
|
PACS:
|
68.43.Mn
|
(Adsorption kinetics ?)
|
|
68.47.Gh
|
(Oxide surfaces)
|
|
87.14.gk
|
(DNA)
|
|
34.35.+a
|
(Interactions of atoms and molecules with surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305237 and 11974366), the Fundamental Research Funds for the Central Universities, China, the Natural Science Foundation of Shanghai, China (Grant No. 19ZR1463200), and the Key Research Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH053). |
Corresponding Authors:
Xiaoling Lei
E-mail: leixiaoling@ecust.edu.cn
|
Cite this article:
Huishu Ma(马慧姝), Jige Chen(陈济舸), Haiping Fang(方海平), and Xiaoling Lei(雷晓玲) Oxidation degree dependent adsorption of ssDNA onto graphene-based surface 2021 Chin. Phys. B 30 106806
|
[1] Watson J D and Crick F H 1953 Nature 171 737 [2] Pray L 2008 Nature Education 1 [3] Liu Z, Liu B, Ding J and Liu J 2014 Anal. Bioanal. Chem. 406 6885 [4] Hu K, Lan D, Li X and Zhang S 2008 Anal. Chem. 80 9124 [5] Robinson D B, Persson H H J, Zeng H, Li G, Pourmand N, Sun S and Wang S X 2005 Langmuir 21 3096 [6] Song B, Cuniberti G, Sanvito S and Fang H 2012 Appl. Phys. Lett. 100 063101 [7] Morales-Narváez E and Merkoçi A 2019 Adv. Mater. 31 1805043 [8] Yang K, Feng L, Shi X and Liu Z 2013 Chem. Soc. Rev. 42 530 [9] Tang L, Wang Y and Li J 2015 Chem. Soc. Rev. 44 6954 [10] Kim J, Cote L J, Kim F, Yuan W, Shull K R and Huang J 2010 J. Am. Chem. Soc. 132 8180 [11] Lu N, Wang L, Lv M, Tang Z and Fan C 2019 Nano Res. 12 247 [12] Lu C, Huang Z, Liu B, Liu Y, Ying Y and Liu J 2017 Angew. Chem. Int. Edit. 56 6208 [13] Liu B and Liu J 2017 J. Am. Chem. Soc. 139 9471 [14] Geim A K 2009 Science 324 1530 [15] Rao C, Subrahmanyam K, Ramakrishna Matte H, Maitra U, Moses K and Govindaraj A 2011 Int. J. Mod. Phys. B 25 4107 [16] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308 [17] Qin Zhang H Z, Xin Lu Cheng 2018 Chin. Phys. B 27 27301 [18] Zheng Q, Geng Y, Wang S, Li Z and Kim J K 2010 Carbon 48 4315 [19] Pumera M 2013 Electrochem. Commun. 36 14 [20] Kemp K C, Seema H, Saleh M, Le N H, Mahesh K, Chandra V and Kim K S 2013 Nanoscale 5 3149 [21] Lei H, Mi L, Zhou X, Chen J, Hu J, Guo S and Zhang Y 2011 Nanoscale 3 3888 [22] Tu Y S, Zhao L, Sun J J, Wu Y Y, Zhou X J, Chen L, Lei X L, Fang H P and Shi G S 2020 Chin. Phys. Lett. 37 066803 [23] Lei H, Mi L, Zhou X, Chen J, Hu J, Guo S and Zhang Y 2011 Nanoscale 3 3888 [24] Tiwari J N, Kemp K C, Nath K, Tiwari R N, Nam H G and Kim K S 2013 ACS Nano 7 9223 [25] Shankla M and Aksimentiev A 2014 Nat. Commun. 5 5171 [26] Balapanuru J, Yang J X, Xiao S, Bao Q, Jahan M, Polavarapu L, Wei J, Xu Q H and Loh K P 2010 Angew. Chem. Int. Edit. 49 6549 [27] Park J S, Na H K, Min D H and Kim D E 2013 Analyst 138 1745 [28] Huang P J J and Liu J 2012 Anal. Chem. 84 4192 [29] Varghese N, Mogera U, Govindaraj A, Das A, Maiti P K, Sood A K and Rao C 2009 Chem. Phys. Chem. 10 206 [30] Manohar S, Mantz A R, Bancroft K E, Hui C Y, Jagota A and Vezenov D V 2008 Nano Lett. 8 4365 [31] Jin L, Yang K, Yao K, Zhang S, Tao H, Lee S T, Liu Z and Peng R 2012 ACS Nano 6 4864 [32] Patil A J, Vickery J L, Scott T B and Mann S 2009 Adv. Mater. 21 3159 [33] Zhao X 2011 J. Phys. Chem. C 115 6181 [34] Ma H, Xu Z, Fang H and Lei X 2020 Phys. Chem. Chem. Phys. 22 11740 [35] Lei X, Ma H and Fang H 2020 Nanoscale 12 6699 [36] Heerema S J and Dekker C 2016 Nat. Nanotechn. 11 127 [37] Lerf A, He H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477 [38] Gao W, Alemany L B, Ci L and Ajayan P M 2009 Nat. Chem. 1 403 [39] Pacilé D, Meyer J, Rodríguez A F, Papagno M, Gomez-Navarro C, Sundaram R, Burghard M, Kern K, Carbone C and Kaiser U 2011 Carbon 49 966 [40] Gómez-Navarro C, Meyer J C, Sundaram R S, Chuvilin A, Kurasch S, Burghard M, Kern K and Kaiser U 2010 Nano Lett. 10 1144 [41] Erickson K, Erni R, Lee Z, Alem N, Gannett W and Zettl A 2010 Adv. Mater. 22 4467 [42] Saxena S, Tyson T A and Negusse E 2010 J. Phys. Chem. Lett. 1 3433 [43] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [44] Kronberg B, Stenius P and Igeborn G 1984 J. Coll. Inter. Sci. 102 418 [45] Kim H S, Farmer B L and Yingling Y G 2017 Adv. Mater. Inte. 4 1601168 [46] Yan H, Tao X, Yang Z, Li K, Yang H, Li A and Cheng R 2014 J. Hazard. Mater. 268 191 [47] Tan P, Bi Q, Hu Y, Fang Z, Chen Y and Cheng J 2017 Appl. Sur. Sci. 423 1141 [48] Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C and Fang H 2013 Nat. Nanotech. 8 594 [49] Kim H S, Farmer B L and Yingling Y G 2017 Adv. Mater. Inter. 4 1601168 [50] Yang J, Shi G, Tu Y and Fang H 2014 Angew. Chem. Int. Edit. 53 10190 [51] Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 [52] Duan Y, Wu C, Chowdhury S, Lee M C, Xiong G, Zhang W, Yang R, Cieplak P, Luo R and Lee T 2003 J. Comput. Chem. 24 1999 [53] Ponomarev S Y, Thayer K M and Beveridge D L 2004 Proc. Nat. Acad. Sci. USA 101 14771 [54] Ricci C G, de Andrade A S, Mottin M and Netz P A 2010 J. Phys. Chem. B 114 9882 [55] Chen J, Chen L, Wang Y and Chen S 2014 J. Phys. D 47 505401 [56] Wu Y Y, Bao L, Zhang X and Tan Z J 2015 J. Chem. Phys. 142 125103 [57] Xu Z, Lei X, Tu Y, Tan Z J, Song B and Fang H 2017 Chem. Eur. J. 23 13100 [58] Zuo G, Zhou X, Huang Q, Fang H and Zhou R 2011 J. Phys. Chem. C 115 23323 [59] Titov A V, Král P and Pearson R 2009 ACS Nano. 4 229 [60] Patra N, Wang B and Král P 2009 Nano Lett. 9 3766 [61] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926 [62] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 [63] Zeng S, Chen L, Wang Y and Chen J 2015 J. Phys. D 48 275402 [64] Ranganathan S V, Halvorsen K, Myers C A, Robertson N M, Yigit M V and Chen A A 2016 Langmuir 32 6028 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|