1 Department of Basic Courses, Rocket Force University of Engineering, Xi'an 710025, China; 2 College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China; 3 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract For widespectrum chaotic oscillation, superlattice cryptography is an autonomous controllable brand-new technology. Originating from sequential resonance tunneling of electrons, the chaotic oscillation is susceptible to temperature change, which determines the performance of superlattices. In this paper, the temperature effects of chaotic oscillations are investigated by analyzing the randomness of a sequence at different temperatures and explained with superlattice microstates. The results show that the bias voltage at different temperatures makes spontaneous chaotic oscillations vary. With the temperature of superlattices changing, the sequence dives in entropy value and randomness at specific bias. This work fills the gap in the study of temperature stability and promotes superlattice cryptography for practice.
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61834004).
Corresponding Authors:
Yan-Fei Liu
E-mail: bbmcu@126.com
Cite this article:
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀) Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation 2021 Chin. Phys. B 30 106805
[1] Esaki L and Tsu R 1970 IBM J. Res. Dev.14 61 [2] Sawaki N, Suzuki M, Takagaki Y, Goto H and Akasaki I 1986 Superlattices Microstruct.2 281 [3] Sibille A, Palmier J F, Wang H, Esnault J C and Mollot F 1990 Appl. Phys. Lett.56 256 [4] Griem H T, Hsieh K H, Daenens I J and Delaney M J 1987 J. Vac. Sci. Technol. B5 785 [5] Ashkenazy Y, Horwitz L P, Levitan J, Lewkowicz M and Rothschild Y 1995 Phys. Rev. Lett.75 1070 [6] Zhang Y H, Jorg K, Robert K and Klaus P H 1996 Phys. Rev. Lett.77 3001 [7] Huang Y Y, Li W, Ma W Q, Qin H and Zhang Y H 2012 Chin. Sci. Bull.57 2070 [8] Li W, Yaara A, Igor R, Song H L, Huang Y Y, Klaus B, Michael R, Zhang Y H, Holger G T and Ido K 2015 Europhys. Lett.112 30007 [9] Li W, Igor R, Yaara A, Huang Y Y, Song H L, Zhang Y H, Michael R and Ido K 2013 Phys. Rev. Lett.111 044102 [10] Liu Y F, Chen C, Yang D D and Li X J 2020 Acta Phys. Sin.69 100504 (in Chinese) [11] Lars K, Miguel S C, Ingo F, Claudio M R, Romain N M and Guy S V 2017 Sci. Rep.7 43428 [12] Liu W, Yin Z Z, Cheng X M, Peng Z Y, Song H L, Liu P H, Tong X H and Zhang Y H 2018 Chin. Sci. Bull.63 1034 [13] Deeaud B, Chomette A, Lambert B, Regreny A, Romestain R and Edel P 1986 Solid State Commun.57 90173 [14] Soskin S M, Khovanov I A and Mcclintock P E V 2015 Phys. Rev. Lett.114 166802 [15] Xia J B 1990 Phys. Rev. B41 3117 [16] Grahn H, Kastrup J, Ploog K, Bonilla L, Galan J, Kindelan M and Moscoso M 1995 Jpn. J. Appl. Phys. Part34 4526 [17] Kwok S H, Merlin R, Grahn H T and Ploog K 1994 Phys. Rev. B50 2007 [18] Zhang Y H, Klann R, Holger G T and Klaus P H 1997 Superlattices Microstruct21 565 [19] Gettings C and Speake C C 2019 Rev. Sci. Instrum.90 025004 [20] Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimori S, Yoshimura K and Davis P 2009 IEEE J. Quantum Electron.45 1367 [21] Hirano K, Yamazaki T, Morikatsu S, Okumura H, Aida H, Uchida A, Yoshimori S, Yoshimura K, Harayama T and Davis P 2010 Opt. Express18 5512 [22] Marcin P P, Antonio J and Maciej O 2015 IEEE Sens. J.15 26838 [23] Xu R, Wen L Y, Wang Z J, Zhao H, Mu G, Zeng Z Q, Zhou M, Bohm S, Zhang H, Wu Y H, Runge E and Lei Y 2020 Adv. Funct. Mater.30 2005170 [24] Guo H, Tang W Z, Liu Y and Wei W 2018 Phys. Rev. E81 051137 [25] Wang A B, Li P, Zhang J G, Zhang J Z, Li L and Wang Y C 2013 Opt. Express21 20452 [26] Kanter I, Aviad Y, Reidler I, Cohen E and Rosenbluh M 2010 Nat. Photonics4 58 [27] Li X, Cohen A B, Murphy T E and Roy R 2011 Opt. Lett.36 1020 [28] Wang L S, Zhang T, Wang D M, Wu D Y, Zhou L, Wu J, Liu X Y and Wang A B 2017 Acta Phys. Sin.66 234205 (in Chinese) [29] Wang k, Yan Q, Yu S, Qi X, Zhou Y and Tang Z 2014 VLSI Design2014 1 [30] Cicalese F, Gargano L and Vaccaro U 2019 IEEE Trans. Inf. Theory64 2220 [31] Liu Y F, Yang D D, Zheng H and Wang L X 2017 Chin. Phys. B26 120502 [32] Hosmer D W, Hosmer T, Hosmer T, Le CS and Lemeshwo S 1997 Statistis Medicine16 965 [33] Gomathy K, Balakrishnan M, Pandiselvam R 2019 J. Food Process Eng.42 13280 [34] Qu X L and Gu J J 2020 RSC Advanes10 1243 [35] Kini R N, Kent A J and Henini M 2009 Phys. Rev. B80 35335 [36] Fasolino A, Molinari E and Maan C J 1987 Superlattices Microstruct3 117 [37] Greenaway M T, Balanov A G, Fowler D, Kent A J and Fromhold T M 2010 Phys. Rev. B81 235313
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.