Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090302    DOI: 10.1088/1674-1056/abeef2
GENERAL Prev   Next  

Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement

Yan Yu(于妍)1, Nan Zhao(赵楠)1,†, Chang-Xing Pei(裴昌幸)1, and Wei Li(李玮)2
1 State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China;
2 Cloud Computing Center of Xi'an Branch of Shaanxi Telecom, China Telecom, Xi'an 710002, China
Abstract  Due to the unavoidable interaction between the quantum channel and its ambient environment, it is difficult to generate and maintain the maximally entanglement. Thus, the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application. Here, we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously. The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability. In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels, we put forward the second scheme, which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers. In particular, its success probability can reach 100% in principle, and independent of the entanglement degree of the shared non-maximally entangled channel. Notably, in the second scheme, the auxiliary particle is not required.
Keywords:  quantum multicast communications      non-maximally entangled states      remote state preparation  
Received:  22 October 2020      Revised:  22 February 2021      Accepted manuscript online:  16 March 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the Key Industry Projects in Shaanxi Province, China (Grant Nos. 2019ZDLGY09-03 and 2020ZDLGY15-09), the National Natural Science Foundation of China (Grant Nos. 61771296, 61372076, and 61301171), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2018JM60-53 and 2018JZ60-06), and the 111 Project (Grant B08038).
Corresponding Authors:  Nan Zhao     E-mail:  zhaonan@xidian.edu.cn

Cite this article: 

Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮) Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement 2021 Chin. Phys. B 30 090302

[1] Britt B C 2020 Quantum Engineering 2 e29
[2] Wang G Y and Long G L 2020 Sci. Chin. Phys. Mech. Astron. 63 220311
[3] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301
[4] Wang M, Wu R B, Lin J T and Zhang J H 2019 Quantum Engineering 1 e9
[5] Xin T, Wang B X, Li K R, Kong X Y, Wei S J, Wang T, Ruan D and Long G L 2018 Chin. Phys. B 27 020308
[6] Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[7] Lo H K 2000 Phys. Rev. A 62 012313
[8] Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901
[9] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
[10] Abeyesinghe A and Hayden P 2003 Phys. Rev. A 68 062319
[11] Leung D W and Shor P W 2003 Phys. Rev. Lett. 90 127905
[12] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[13] Paris M G A, Cola M M and Bonifacio R 2003 J. Opt. B: Quantum Semiclass. 5 S360
[14] Peng X H, Zhu X W, Fang X M, Feng M, Liu M L and Gao K L 2003 Phys. Lett. A 306 271
[15] Xiang G Y, Li J, Bo Y and Guo G C 2005 Phys. Rev. A 72 012315
[16] Peters N A, Barreiro J T, Goggin M E, Wei T H and Kwiat P G 2005 Phys. Rev. Lett. 94 150502
[17] Liu W T, Wu W, Ou B Q, Chen P X, Li C Z and Yuan J M 2007 Phys. Rev. A 76 022308
[18] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
[19] Barreiro J T and Wei T C 2010 Phys. Rev. Lett. 105 030407
[20] Xia Y, Song J and Song H S 2007 J. Phys. B At. Mol. Opt. Phys. 40 3719
[21] Ding M, Jiang M and Huang X 2016 IEEE 35th Chinese Control Conference (CCC), July 27-29, 2016, Chengdu, China, pp. 9105-9108
[22] Peng J Y 2017 Comput. Eng. Appl. 53 38
[23] Zhou Y J and Tao Y H 2017 Int. J. Theor. Phys. 57 549
[24] Zhang C Y, Bai M Q and Zhou S Q 2018 Quantum Inf. Process. 17 146
[25] Wang M, Yang C and Mousoli R 2018 Comput. Mater. Continua 55 321
[26] Wang Z Y 2011 Commun. Theor. Phys. 55 244
[27] Wang D and Ye L 2013 Quantum Inf. Process. 12 3223
[28] Chen N 2015 Chin. Phys. B 24 100307
[29] Huang L and Zhao H X 2017 Int. J. Theor. Phys. 56 678
[30] Wei J H, Shi L and Xu Z 2018 Int. J. Quantum Inf. 16 1850001
[31] Yu Y, Zhao N and Pei C X 2019 Quantum Inf. Process. 18 319
[32] Zhao N, Li W D and Yu Y 2020 IEEE Access 8 29658
[33] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[34] Hein M, Dur W and Briegel H J 2005 Phys. Rev. A 71 032350
[35] Ma S Y, Tang P and Chen X B 2013 Int. J. Theor. Phys. 52 968
[36] Hou K, Wang H Y and Li Y B 2014 Commun. Theor. Phys. 61 305
[37] Wei Z H, Zha X W and Yu Y 2017 Int. J. Theor. Phys. 56 1318
[38] Nie Y Y, Sang M H and Nie L P 2017 Int. J. Theor. Phys 56 1883
[39] Choudhury B S and Soumen S 2018 Quantum Inf. Process. 17 175
[40] Zha X W, Wang M R and Jiang R X 2020 Int. J. Theor. Phys. 59 960
[41] Du Z and Li X 2020 Quantum Inf. Process. 19 39
[42] Yuan H, Liu Y M, Zhang W and Zhang Z J 2008 J. Phys. B: At. Mol. Opt. Phys. 41 145506
[43] Chen N, Yan B and Chen G 2018 Chin. Phys. B 27 090304
[44] Ma S Y, Chen W L, Qu Z G and Tang P 2017 Int. J. Theor. Phys. 56 1653
[45] Chen N, Quan D X and Yang H 2016 Quantum Inf. Process. 15 1719
[46] Xiao X Q and Liu J M 2007 Int. J. Theor. Phys 46 2378
[47] Hou K, Wang J, Yuan H and Shi S H 2009 Commun. Theor. Phys. 52 848
[48] Luo M X, Chen X B, Ma S Y, Yang Y X and Hu Z M 2010 Int. J. Theor. Phys. 49 1262
[49] Wang Z Y and Song J F 2011 Int. J. Theor. Phys. 50 2410
[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[3] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[4] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[5] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[6] Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels
Chang Li-Wei (常利伟), Zheng Shi-Hui (郑世慧), Gu Li-Ze (谷利泽), Xiao Da (肖达), Yang Yi-Xian (杨义先). Chin. Phys. B, 2014, 23(9): 090307.
[7] Efficient remote preparation of arbitrary two-and three-qubit states via the χ state
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星). Chin. Phys. B, 2014, 23(9): 090308.
[8] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[9] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[10] Probabilistic remote preparation of a high-dimensional equatorial multiqubit with four-party and classical communication cost
Dai Hong-Yi(戴宏毅), Zhang Ming(张明), Chen Ju-Mei(陈菊梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2011, 20(5): 050310.
[11] Scheme for implementing perfect remote state preparation with W-class state in cavity QED
Wang Xue-Wen(王学文) and Peng Zhao-Hui(彭朝晖). Chin. Phys. B, 2008, 17(7): 2346-2351.
[12] Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state
Ma Peng-Cheng(马鹏程) and Zhan You-Bang(詹佑邦). Chin. Phys. B, 2008, 17(2): 445-450.
[13] High efficient scheme for remote state preparation with cavity QED
Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Xu Yan-Qiu(徐彦秋). Chin. Phys. B, 2008, 17(10): 3725-3728.
[14] Remote preparation of an entangled two-qubit state with three parties
Dai Hong-Yi (戴宏毅), Chen Ping-Xing (陈平形), Zhang Ming(张明), and Li Cheng-Zu(李承祖) . Chin. Phys. B, 2008, 17(1): 27-33.
[15] Remote preparation of a Greenberger--Horne--Zeilinger state via a two-particle entangled state
Lin Xiu(林秀), Li Hong-Cai(李洪才), Lin Xiu-Min (林秀敏), Li Xing-Hua(李兴华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2007, 16(5): 1209-1214.
No Suggested Reading articles found!