Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047304    DOI: 10.1088/1674-1056/abd6fd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced circular dichroism of plasmonic system in the strong coupling regime

Yun-Fei Zou(邹云飞)1,2 and Li Yu(于丽)1,2,†
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The circular dichroism (CD) signal of a molecule is usually weak, however, a strong CD signal in optical spectrum is desirable because of its wide range of applications in biosensing, chiral photo detection, and chiral catalysis. In this work, we show that a strong chiral response can be obtained in a hybridized system consisting of an artificial chiral molecule and a nanorod in the strong coupling regime. The artificial chiral molecule is composed of six quantum dots in a helix assembly, and its CD signal arises from internal Coulomb interactions between quantum dots. The CD signal of the hybridized system is highly dependent on the Coulomb interactions and the strong coupling progress through the electromagnetic interactions. We use the coupled oscillator model to analyze strong coupling phenomenon and address that the strong coupling progress can amplify the CD signal. This work provides a scenario for designing new plasmonic nanostructures with a strong chiral optical response.
Keywords:  plasmonic      chirality      strong coupling      circular dichroism  
Received:  20 October 2020      Revised:  01 December 2020      Accepted manuscript online:  28 December 2020
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  11.15.Me (Strong-coupling expansions)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301300), the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A09), and the National Natural Science Foundation of China (Grant No. 11574035).
Corresponding Authors:  Corresponding author. E-mail: yuliyuli@bupt.edu.cn   

Cite this article: 

Yun-Fei Zou(邹云飞) and Li Yu(于丽) Enhanced circular dichroism of plasmonic system in the strong coupling regime 2021 Chin. Phys. B 30 047304

1 Eizner E, Avayu O, Ditcovski R and Ellenbogen T 2015 Nano Lett. 15 6215
2 Tiecke T G, Thompson J D, De L, N P, Liu L, Vuletic V and Lukin M D 2014 Nature 508 241
3 McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2014 Nature 425 268
4 Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L and Imamo\uglu A 2012 Nat. Photon. 6 605
5 Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P and Guo G C 2015 Chin. Phys. Lett. 32 107305
6 Khitrova G, Gibbs M, Kira M, Koch S W and Scherer A 2006 Nat. Phys. 2 81
7 Chang D E, Vuletic V and Lukin M D 2014 Nat. Photon. 8 685
8 Hennessy K, Badolato A, Winger M, Gerace G, Atatüre M, Gulde S, Fält S, Hu E L and Imamo\uglu A 2007 Nature 445 896
9 Pang K W, Li H H, Song G and Yu L 2019 Chin. Phys. B 28 127301
10 Liu C P, Zhu X L, Zhang J S, Xu J, Wang Y L and Yu D P 2016 Chin. Phys. Lett. 33 087303
11 Trügler A and Hohenester U 2008 Phys. Rev. B 77 115403
12 Wu H, Wu J Y and Chen Z 2020 Acta Phys. Sin. 69 010201 (in Chinese)
13 Mao B B, Liu M X, Wu W, Li L S, Ying Z J and Luo H G 2018 Chin. Phys. B 27 54219
14 Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J and Duan H G 2019 Acta Phys. Sin. 68 247301 (in Chinese)
15 Jiang P, Li C, Chen Y Y, Song G, Wang Y L and Yu L 2019 Chin. Phys. Lett. 36 107301
16 Qin J, Chen Y H, Zhang Z P, Zhang Y F, Blaikie R J, Ding B Y and Qiu M 2020 Phys. Rev. Lett. 124 063902
17 Luo Y, Cheng C, Jiang M L, Li R P, Zu S, Li Y and Fang Z Y 2017 Adv. Opt. Mater. 5 1700040
18 Fasman G D1996 Circular Dichroism and the Conformational Analysis of Biomolecules(Springer)
19 Govorov A O 2011 J. Phys. Chem. C 115 7914
20 Govorov A O, Fan Z Y, Hernandez P, Slocik J M and Naik R R 2010 Nano Lett. 10 1374
21 Fan Z Y and Govorov A O 2010 Nano Lett. 10 2580
22 He T T, Ye Q H and Song G 2020 Chin. Phys. B 29 097306
23 Govorov A O, GunKo Y K, Slocik J M, Gerard V A, Fan Z Y and Naik R R 2011 J. Mater. Chem. 42 16806
24 Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
25 Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P and Xu H X 2017 Nano Lett. 17 3809
26 Kuzyk A, Schreiber R, Fan Z Y, Pardatscher G, Roller E, Högele A, Simmel F C, Govorov A O and Liedl T Nature 483 311
27 Törmä P and Barnes W L 2015 Rep. Prog. Phys. 78 013901
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[4] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[5] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[6] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[7] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[8] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[9] Circular dichroism spectra of α -lactose molecular measured by terahertz time-domain spectroscopy
Chun Wang(王春), Bo Wang(王博), Gaoshuai Wei(魏高帅), Jianing Chen(陈佳宁), and Li Wang(汪力). Chin. Phys. B, 2022, 31(10): 104201.
[10] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[11] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[12] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[13] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[14] Solar energy full-spectrum perfect absorption and efficient photo-thermal generation
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强). Chin. Phys. B, 2021, 30(8): 084206.
[15] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
No Suggested Reading articles found!