INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles |
Archana V1, Lakshmi Mohan1,2,†, Kathirvel P3, and Saravanakumar S4 |
1 Department of Sciences, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India\vglue3pt; 2 Research and Development Center, Bharathiar University, Coimbatore-641046, Tamilnadu, India; 3 GRD Center for Materials Research, Department of Physics, P S G College of Technology, Coimbatore-641004, Tamilnadu, India; 4 Department of Physics, N S S College, Pandalam-689501, Kerala, India |
|
|
Abstract Tin oxide (SnO2) and iron-doped tin oxide (Sn1-xFexO2 , x = 0.05 wt%, 0.10 wt%) nanoparticles are synthesized by the simple sol-gel method. The structural characterization using x-ray diffraction (XRD) confirms tetragonal rutile phases of the nanoparticles. The variations in lattice parameters and relative intensity with Fe-doping concentration validate the incorporation of iron into the lattice. The compressive strain present in the lattice estimated by using peak profile analysis through using Williamson-Hall plot also exhibits the influence of grain boundary formation in the lattice. The radiative recombination and quenching observed in optical characterization by using photoluminescence spectrum (PL) and the shift in the band gap estimated from UV-visible diffused reflectance spectrum corroborate the grain boundary influence. Raman spectrum and the morphological analysis by using a field emission scanning electron microscope (FESEM) also indicate the formation of grain boundaries. The compositional analysis by using energy dispersive x-ray spectrum (EDAX) confirms Fe in the SnO2 lattice. The conductivity studies exhibit that the impendence increases with doping concentration increasing and the loss factor decreases at high frequencies with doping concentration increasing, which makes the Sn1-xFexO2 a potential candidate for device applications.
|
Received: 11 July 2020
Revised: 27 September 2020
Accepted manuscript online: 20 December 2020
|
PACS:
|
82.33.Ln
|
(Reactions in sol gels, aerogels, porous media)
|
|
75.75.Fk
|
(Domain structures in nanoparticles)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
Corresponding Authors:
†Corresponding author. E-mail: lakshmi_mohan@cb.amrita.edu
|
Cite this article:
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles 2021 Chin. Phys. B 30 048202
|
1 Chavali M S and Nikolova M P 2019 SN Appl. Sci. 1 607 2 Bajpai N, Khan S A, Kher R S, Bramhe N, Dhoble S J and Tiwari A 2014 J. Lumin. 145 940 3 Jiang Q, Zhang X and You J 2018 Nano-Micro Small 14 1 4 Carre? no N L V, Nunes M R, Garcia I T S, Orlandi M O, Fajardo H V and Longo E 2009 J. Nanoparticle Res. 11 955 5 Batzill M and Diebold U 2005 Prog. Surf. Sci. 79 47 6 Doke S, Ganguly P and Mahamuni S2020 D Liq. Cryst. 00 1 7 Li H, Su Q, Kang J, Huang M, Feng M, Feng H, Huang P and Du G 2018 Mater. Lett. 217 276 8 Elango G and Roopan S M2016 E J. Photochem. Photobiol. B Biol. 155 34 9 Viet P Van, Thi C M and Hieu L Van2016 J. Nanomater. 2016 10 Li Z and Yi J 2017 Sensors Actuators B Chem. 243 96 11 Hermawan A, Asakura Y, Inada M and Yin S 2019 Ceram. Int. 45 15435 12 Xie H, Yin X, Chen P, Liu J, Yang C, Que W and Wang G 2019 Mater. Lett. 234 311 13 Karthik K, Revathi V and Tatarchuk T 2018 Mol. Cryst. Liq. Cryst. 671 17 14 Arularasu M V, Anbarasu M, Poovaragan S, Sundaram R, Kanimozhi K, Magdalane C M, Kaviyarasu K, Thema F T, Letsholathebe D, Mola G T and Maaza M 2017 J. Nanosci. Nanotechnol. 18 3511 15 Shanmugam N, Sathya T, Viruthagiri G, Kalyanasundaram C, Gobi R and Ragupathy S 2016 Appl. Surf. Sci. 360 283 16 Patil G E, Kajale D D, Gaikwad V B and Jain G H 2012 Int. Nano Lett. 2 2 17 Zhang J and Gao L2004 S J. Solid State Chem. 177 1425 18 Marzec A, Radecka M, Maziarz W, Kusior A and Pedzich Z2016 S J. Eur. Ceram. Soc. 36 2981 19 Voon C H, Foo K L, Lim B Y, Gopinath S C B and Al-Douri Y2020 Synthesis and Preparation of Metal-Oxide Powders, Metal Oxides ed Al-Douri(Elsevier) pp. 31-65 20 Al-Samarai R A, Mahmood A S and Al-Douri Y2020 5 Metal Oxides ed Al-Douri(Elsevier) pp. 83-99 21 Wang E, Chen P, Yin X, Wu Y and Que W2019 Sol. RRL 3 1 22 Alexandrescu R, Morjan I, Dumitrache F, Birjega R, Fleaca C, Luculescu C R, Popovici E, Soare I, Sandu I, Dutu E and Prodana G2010 J. Optoelectron. Adv. Mater. 12 599 23 Tian Z M, Yuan S L, He J H, Li P, Zhang S Q, Wang C H, Wang Y Q, Yin S Y and Liu L 2008 J. Alloys Compd. 466 26 24 Toloman D, Popa A, Stan M, Socaci C, Biris A R, Katona G, Tudorache F, Petrila I and Iacomi F 2017 Appl. Surf. Sci. 402 410 25 Dorneanu P P, Airinei A, Grigoras M, Fifere N, Sacarescu L, Lupu N and Stoleriu L 2016 J. Alloys Compd. 668 65 26 Mani R, Vivekanandan K and Vallalperuman K 2017 J. Mater. Sci. Mater. Electron. 28 4396 27 Kaur N, Abhinav, Singh G P, Singh V, Kumar S and Kumar D2016 AIP Conf. Proc. 1728 1 28 Barkley T K, Vastano J E, Applegate J R and Bakrania S D2012 Adv. Mater. Sci. Eng. 2012 29 Tran R, Xu Z, Zhou N, Radhakrishnan B, Luo J and Ong S P 2016 Acta Mater. 117 91 30 Ben Haj Othmen W, Sdiri N, Elhouichet H and Férid M 2016 Mater. Sci. Semicond. Process. 52 46 31 Garnet N S, Ghodsi V, Hutfluss L N, Yin P, Hegde M and Radovanovic P V 2017 J. Phys. Chem. C 121 1918 32 Cullity B D1956 Elements of X-ray Diffraction(Addison-Wesley Publishing) 33 Howard C J, Hunter B A and Kim D1998 43 241 34 Kaur J, Shah J, Kotnala R K and Verma K C2012 R Ceram. Int. 38 5563 35 Sabri N S, Deni M S M, Zakaria A and Talari M K 2012 Phys. Procedia 25 233 36 Asiltürk M and Sayílkan F2009 J. Photochem. Photobio.A 203 64 37 Liu C M, Fang L M, Zu X T and Zhou W L 2007 Chin. Phys. 16 95 38 Chang C H, Gong M, Dey S, Liu F and Castro R H R 2015 J. Phys. Chem. C 119 6389 39 Pereira M S, Ribeiro T S, Lima F A S, Santos L P M, Silva C B, Freire P T C and Vasconcelos I F2018 J. Nanoparticle Res. 20 2029 40 Rani S, Roy S C, Karar N and Bhatnagar M C 2007 Solid State Commun. 141 214 41 Rohith N M, Kathirvel P, Saravanakumar S and Mohan L2018 Optik (Stuttg.) 172 940 42 Bindu P and Thomas S2014 J. Theor. Appl. Phys. 8 123 43 A Narmada, P Kathirvel, Mohan L, S Saravanakumar, R Marnadu and J Chandrasekhar2020 Optik (Stuttg.) 202 163701 44 Muhammed Shafi P and Chandra Bose A2015 AIP Adv. 5 057137 45 Fang L M, Zu X T, Li Z J, Zhu S, Liu C M, Zhou W L and Wang L M 2008 J. Alloys Compd. 454 261 46 Winyayong A and Wongsaprom K2019 N Journal of Physics: Conference Series Vol. 1380 47 Mohan L, Sisupalan N, Ponnusamy K and Sadagopalan S 2020 J. Inorg. Organomet. Polym. Mater. 30 2626 48 Babu B, Neelakanta Reddy I, Yoo K, Kim D and Shim J 2018 Mater. Lett. 221 211 49 Adàn C, Bahamonde A, Fernàndez-Garc\'ía M and Mart\'ínez-Arias A 2007 Appl. Catal. B Environ. 72 11 50 Kumar V and Singh J K2010 Indian J. Pure Appl. Phys. 48 571 51 Haouanoh D, TalaIghil R Z, Toubane M, Bensouici F and Mokeddem K 2019 Mater. Res. Express 6 086422 52 Zadsar M, Fallah H R, Haji Mahmoodzadeh M, Hassanzadeh A and Ghasemi Varnamkhasti M 2012 Mater. Sci. Semicond. Process. 15 432 53 Gu F, Wang S F, Song C F, Lü M K, Qi Y X, Zhou G J, Xu D and Yuan D R 2003 Chem. Phys. Lett. 372 451 54 Gu F, Wang S F and Lu M K2004 Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method 8119-23 55 Romano-rodr\imath A2001 T J. Appl. Phys. 90 1550 56 Das S, Kar S and Chaudhuri S2006 J. Appl. Phys. 99 058201 57 Ben W, Othmen H, Sieber B, Elhouichet H, Addad A, Gelloz B, Moreau M, Szunerits S and Boukherroub R 2018 Mater. Sci. Semicond. Process. 77 31 58 Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G and Roumyantseva M 1998 J. Solid State Chem. 135 78 59 Periyasamy M and Kar A 2020 J. Mater. Chem. C 8 4604 60 Shajira P S, Prabhu V G and Bushiri M J 2015 J. Phys. Chem. Solids 87 244 61 Moldovan D, Wolf D, Phillpot S R and Haslam A J2003 Trends in Nanoscale Mechanics pp. 35-59 62 Moldovan D, Wolf D and Phillpot S R 2001 Acta Mater. 49 3521 63 Barik Subrat, Choudhary R N and Singh A K 2011 Adv. Mater. Lett. 2 419 64 Chenari H M, Hassanzadeh A, Golzan M M, Sedghi H and Talebian M 2011 Curr. Appl. Phys. 11 409 65 Khan R and Fashu S 2017 J. Mater. Sci. Mater. Electron. 28 4333 66 Azam A, Ahmed A S, Ansari M S, M M S and Naqvi A H 2010 J. Alloys Compd. 506 237 67 Ashokkumar M and Muthukumaran S 2015 J. Lumin. 162 97 68 Wang C J, Wang Y and Gao C X 2019 Acta Phys. Sin. 68 206401 (in Chinese) 69 Marnadu R, Chandrasekaran J, Maruthamuthu S, Balasubramani V, Vivek P and Suresh R 2019 Appl. Surf. Sci. 480 308 70 Soitah T N, Yang C and Sun L 2011 Mater. Sci. Semicond. Process. 13 125 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|