Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056106    DOI: 10.1088/1674-1056/abe9a7
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Optical spectroscopy study of damage evolution in 6H-SiC by H2+ implantation

Yong Wang(王勇)1, Qing Liao(廖庆)2, Ming Liu(刘茗)3, Peng-Fei Zheng(郑鹏飞)3, Xinyu Gao(高新宇)1, Zheng Jia(贾政)1, Shuai Xu(徐帅)2, and Bing-Sheng Li(李炳生)2,4,†
1 China Institute for Radiation Protection, Taiyuan 030006, China;
2 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China;
3 Southwestern Institute of Physics, Chengdu 610041, China;
4 Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Lattice defects induced by ion implantation into SiC have been widely investigated in the decades by various techniques. One of the non-destructive techniques suitable to study the lattice defects in SiC is the optical characterization. In this work, confocal Raman scattering spectroscopy and photoluminescence spectrum have been used to study the effects of 134-keV H2+ implantation and thermal treatment in the microstructure of 6H-SiC single crystal. The radiation-induced changes in the microstructure were assessed by integrating Raman-scattering peaks intensity and considering the asymmetry of Raman-scattering peaks. The integrated intensities of Raman scattering spectroscopy and photoluminescence spectrum decrease with increasing the fluence. The recovery of the optical intensities depends on the combination of the implantation temperature and the annealing temperature with the thermal treatment from 700 ℃ to 1100 ℃. The different characterizations of Raman scattering spectroscopy and photoluminescence spectrum are compared and discussed in this study.
Keywords:  SiC      H2+ implantation      Raman scattering spectroscopy      photoluminescence spectrum  
Received:  22 January 2021      Revised:  21 February 2021      Accepted manuscript online:  25 February 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
  78.30.-j (Infrared and Raman spectra)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075194), the Sichuan Provincial Science and Technology Program, China (Grant No. 2020ZYD055), and the National Key Research and Development Program of China (Grant No. 2017YFE0301306).
Corresponding Authors:  Bing-Sheng Li     E-mail:  libingshengmvp@163.com

Cite this article: 

Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生) Optical spectroscopy study of damage evolution in 6H-SiC by H2+ implantation 2021 Chin. Phys. B 30 056106

[1] Park C H, Cheong B H, Lee K H and Chang K J 1994 Phys. Rev. B 49 4485
[2] Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 371 329
[3] Tan L, Allen T R, Hunn J D and Miller J H 2008 J. Nucl. Mater. 372 400
[4] Jiang W, Weber W J, Thevuthasan S and Grotzschel R 2000 Nucl. Instrum. Method B 166-167 374
[5] Li B S, Wang Z G and Jin Y F 2013 Nucl. Instrun. Method B 316 239
[6] Zhang L and Li B S 2017 Physica B 508 104
[7] Daghbouj N, Li B S, Callisti M, Sen H S, Jin J, Ou X, Karlik M and Polcar T 2020 Acta Mater. 188 609
[8] Daghbouj N and Li B S, Karlik M and Delcemy A 2019 Appl. Surf. Sci. 466 141
[9] Gregory R B, Wetteroth T A, Wilson S R, Holland O W and Thomas D K 1999 Appl. Phys. Lett. 75 2623
[10] Jia Q, Huang K, You T G, Yi A L, Lin J J, Zhang S B, Zhou M, Zhang B, Yu W J, Ou X and Wang X 2018 Appl. Phys. Lett. 112 192102
[11] Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T and Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese)
[12] Li B S, Zhang C H, Zhang H H, Shibayama T and Yang Y T 2011 Vacuum 86 452
[13] Du Y Y, Li B S, Wang Z G, Sun J R, Yao C F, Pang L L, Zhu Y B, Cui M H, Zhang H P, Li Y F, Wang J, Zhu H P, Song P and Wang D 2014 Acta Phys. Sin. 63 216101 (in Chinese)
[14] Li B S, Liu H P, Kang L, Zhang T M, Xu L J and Xiong An L 2019 J. Eur. Cer. Soc. 39 4307
[15] Zhang L M, Jiang W L, Pan C L, Fadanelli R C, Ai W S, Chen L and Wang T S 2019 J. Raman Spectroscopy 50 1197
[16] Heliou R, Brebner J L and Roorda S 2001 Nucl. Instrum. Method B 175-177 268
[17] http://www.srim.org
[18] Harima H 2006 Microelectronic Eng. 83 126
[19] Kawai Y, Maeda T, Nakamura Y, Sakurai Y, Iwaya M, Kamiyama S, Amano H, Akasaki I, Yochimoto M, Furusho T, Kinoshita H and Shiomi H 2006 Mater. Sci. Forum 527-529 263
[20] Nakashima S and Harima H 1997 Phys. Stat. Sol. (a) 162 39
[21] Sorieul S, Costantini J M, Gosmain L, Thome L and Grob J J 2006 J. Phys.: Condens. Matter 18 5235
[22] Huang X, Ninio F, Brown L J and Prawer S 1995 J. Appl. Phys. 77 5910
[23] Wang P F, Huang L, Zhu W and Ruan Y F 2012 Solid State Commun. 152 887
[24] Li B S, Krsjak V, Degmova J, Wang Z G, Shen T L, Li H, Sojak S, Slugen V and Kawasuso A 2020 J. Nucl. Mater. 535 152180
[25] Liu Y Z, Li B S and Zhang L 2017 Chin. Phys. Lett. 34 052801
[26] Han W T and Li B S 2018 J. Nucl. Mater. 504 161
[27] Liu H P, L i J Y and Li B S 2018 Chin. Phys. Lett. 35 096103
[28] Gao F, Weber W J, Posselt M and Belko V 2004 Phys. Rev. B 69 245205
[29] Richter H, Wang Z P and Ley L 1981 Solid State Commun. 39 625
[30] Zhang Y, Weber W J, Jiang W, Hallen A and Possnert G 2002 J. Appl. Phys. 91 6388
[31] Jagielski J and Thome L 2009 Appl. Phys. A 97 147
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[11] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[12] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[13] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
No Suggested Reading articles found!