Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046601    DOI: 10.1088/1674-1056/abe114
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantum nature of proton transferring across one-dimensional potential fields

Cheng Bi(毕成)1,2, Quan Chen (陈泉)1, Wei Li(李伟)3, and Yong Yang(杨勇)1,2,†
1 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Proton transfer plays a key role in the applications of advanced energy materials as well as in the functionalities of biological systems. In this work, based on the transfer matrix method, we study the quantum effects of proton transfer in a series of one-dimensional (1D) model potentials and numerically calculate the quantum probability of transferring across single and double barriers (wells). In the case of single barriers, when the incident energies of protons are above the barrier height, the quantum oscillations in the transmission coefficients depend on the geometric shape of the barriers. It is found that atomic resonant tunneling (ART) not only presents in the rectangular single well and rectangular double barriers as expected, but also exists in the other types of potential wells and double barriers. For hetero-structured double barriers, there is no resonant tunneling in the classical forbidden zone, i.e., in the case when the incident energy (E i) is lower than the barrier height (E b). Furthermore, we have provided generalized analysis on the characteristics of transmission coefficients of hetero-structured rectangular double barriers.
Keywords:  proton transfer      nuclear quantum effects      atomic resonant tunneling      double barriers  
Received:  21 December 2020      Revised:  21 January 2021      Accepted manuscript online:  29 January 2021
PACS:  66.30.jp (Proton diffusion)  
  68.35.Fx (Diffusion; interface formation)  
  82.40.-g (Chemical kinetics and reactions: special regimes and techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474285).
Corresponding Authors:  Corresponding author. E-mail: yyanglab@issp.ac.cn   

Cite this article: 

Cheng Bi(毕成), Quan Chen (陈泉), Wei Li(李伟), and Yong Yang(杨勇) Quantum nature of proton transferring across one-dimensional potential fields 2021 Chin. Phys. B 30 046601

1 Howie R T, Scheler T, Guillaume C L and Gregoryanz E 2012 Phys. Rev. B 86 214104
2 Liu H and Ma Y 2013 Phys. Rev. Lett. 110 025903
3 Padalkar V S and Seki S 2016 Chem. Soc. Rev. 45 169
4 Liu S, Ma Y Z, Yang Y F, Liu S S, Li Y Q and Song Y Z 2018 Chin. Phys. B 27 023103
5 Yin H and Shi Y 2018 Chin. Phys. B 27 058201
6 Li H, Ma L, Yin H and Shi Y 2018 Chin. Phys. B 27 098201
7 Wang Y S, Jia M, Zhang Q L, Song X Y and Yang D P 2018 Chin. Phys. B 28 103105
8 Song Y, Liu S, Lu J, Zhang H, Zhang C and Du J 2019 Chin. Phys. B 28 093102
9 Horke D A, Watts H M, Smith A D, Jager E, Springate E, Alexander O, Cacho C, Chapman R T and Minns R S 2016 Phys. Rev. Lett. 117 163002
10 Liu P and Mei D 2020 J. Phys. Chem. C. 124 22568
11 Sofronov O O and Bakker H J 2020 ACS Cent. Sci. 6 1150
12 Andrade M F C, Ko H Y, Zhang L, Car R and Selloni A 2020 Chem. Sci. 11 2335
13 Markland T E and Ceriotti M 2018 Nat. Rev. Chem. 2 0109
14 Morales M A, McMahon J M, Pierleoni C and Ceperley D M 2013 Phys. Rev. Lett. 110 065702
15 McKenzie R H, Bekker C, Athokpam B and Ramesh S G 2014 J. Chem. Phys. 140 174508
16 Litman Y, Donadio D, Ceriotti M and Rossi M 2018 J. Chem. Phys. 148 102320
17 Andreani C, Colognesi D, Pietropaolo A and Senesi R 2011 Chem. Phys. Lett. 518 1
18 Senesi R, Flammini D, Kolesnikov A I, Murray é D, Galli G and Andreani C 2013 J. Chem. Phys. 139 074504
19 Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X, Wang E G and Jiang Y 2016 Science 352 321
20 Marx D and Parrinello M 1996 J. Chem. Phys. 104 4077
21 Bi C and Yang Y 2021 J. Phys. Chem. C 125 464
22 Hauge E H, Falck J P and Fjeldly T A 1987 Phys. Rev. B 36 4203
23 Schiff L I1968 Quantum Mechanics (New York: McGraw-Hill) p. 268
24 Tsu R and Esaki L 1973 Appl. Phys. Lett. 22 562
25 Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593
26 Choi K K, Levine B F, Malik R J, Walker J and Bethea C G 1987 Phys. Rev. B 35 4172
27 Zhang Y, Kastrup J, Klann R, Ploog K H and Grahn H T 1996 Phys. Rev. Lett. 77 3001
28 Grosso G and Parravicini G P 2014 Solid State Physics (Academic Press) p. 21
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[4] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[5] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[6] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[7] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[8] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[9] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[10] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[11] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[12] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[13] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[14] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[15] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
No Suggested Reading articles found!