INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Design and optimization of nano-antenna for thermal ablation of liver cancer cells |
Mohammad Javad Rabienejhad1, Azardokht Mazaheri2,†, and Mahdi Davoudi-Darareh3 |
1 Optics and Laser Science and Technology Research Center, Malek Ashtar University of Technology, Shahinshahr, Iran; 2 Department of Physics, University of Isfahan, Iran; 3 Faculty of Science, Malek Ashtar University of Technology, Shahinshahr, Iran |
|
|
Abstract One method of cancer therapy is to utilize nano-antenna for thermal ablation. In this method, the electromagnetic waves emitted from the nano-antenna are absorbed by the tissue and lead to heating of cancer cells. If temperature of cancer cells reaches a threshold, they will begin to die. For this purpose, an L-shaped frame nano-antenna (LSFNA) is designed to introduce into the biological tissue. Thus, the radiation characteristics of the LSFNA such as near and far-field intensities, directivity, and sensitivity to its gap width are studied to the optimization of the nano-antenna. The bio-heat and Maxwell equations are solved using the finite element method. To prevent damage to healthy tissues in this method, the antenna radiation must be completely controlled and performed carefully. Thus, penetration depth, special absorption rate, temperature distribution, and the fraction of tissue necrosis are analyzed in the biological tissue. That is why the design and optimization of the nano-antennas as a radiation source is important. Also, a pulsed source is used to excite the LSFNA. Furthermore, focusing and efficiency of the nano-antenna radiation on the cancer cell is tuned using an adjustable liquid crystal lens. The focus of this lens is changing under an electric field applied to its surrounding cathode.
|
Received: 22 September 2020
Revised: 07 November 2020
Accepted manuscript online: 15 December 2020
|
PACS:
|
84.40.Ba
|
(Antennas: theory, components and accessories)
|
|
64.70.mf
|
(Theory and modeling of specific liquid crystal transitions, including computer simulation)
|
|
52.38.Mf
|
(Laser ablation)
|
|
87.19.xj
|
(Cancer)
|
|
Corresponding Authors:
†Corresponding author. E-mail: dokht2001@yahoo.com
|
Cite this article:
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh Design and optimization of nano-antenna for thermal ablation of liver cancer cells 2021 Chin. Phys. B 30 048401
|
1 Goldberg S N, Grassi C J, Cardella J F, Charboneau J W, Dodd III G D, Dupuy D E, Gervais D A, Gillams A R, Kane R A and Lee Jr F T 2009 J. Vasc. Interv. Radiol. 20 S377 2 Jalali R, Munshi A and Arora B 2009 Neurol. India 57 13 3 Triesscheijn M, Baas P, Schellens J H M and Stewart F A 2006 Oncologist 11 1034 4 Durante M and Loeffler J S 2010 Nat. Rev. Clin. Oncol. 7 37 5 Kennedy J E 2005 Nat. Rev. Cancer 5 321 6 Conde J, Bao C, Cui D, Baptista P V and Tian F 2014 J. Control. Release 183 87 7 Abadeer N S and Murphy C J 2016 J. Phys. Chem. C 120 4691 8 Abbas M, Kessentini A, Loukil H, Muneer P, Ijyas V P T, Bushara S E and Wase M A 2019 Nanoscale Res. Lett. 14 289 9 O'Neal D P, Hirsch L R, Halas N J, Payne J D and West J L 2004 Cancer Lett. 209 171 10 Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002 11 Bharadwaj P, Deutsch B and Novotny L 2009 Adv. Opt. Photon. 1 438 12 Liu Z K, Xie Y N, Geng L, Pan D K and Song P 2016 Chin. Phys. Lett. 33 27802 13 Li T-J, Liang J-G, Li H-P and Liu Y-Q 2016 Chin. Phys. B 25 94101 14 Li X, Sun J D, Huang H J, Zhang Z P, Jin L, Sun Y F, Popov V V and Qin H 2019 Chin. Phys. B 28 118502 15 Zhou T Y 2019 Acta Phys. Sin. 68 055201 (in Chinese) 16 Grober R D, Schoelkopf R J and Prober D E 1997 Appl. Phys. Lett. 70 1354 17 Crozier K B, Sundaramurthy A, Kino G S and Quate C F 2003 J. Appl. Phys. 94 4632 18 Muehlschlegel P, Eisler H-J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607 19 Schuck P J, Fromm D P, Sundaramurthy A, Kino G S and Moerner W E 2005 Phys. Rev. Lett. 94 17402 20 Taminiau T H, Stefani F D, Segerink F B and Van Hulst N F 2008 Nat. Photon. 2 234 21 Wiley B J, Qin D and Xia Y 2010 ACS Nano 4 3554 22 Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688 23 Castillo R C2013 Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition (Berlin: Springer Science & Business Media) 24 Vesseur E J R, De Waele R, Lezec H J, Atwater H A, Garc\'ía de Abajo F J and Polman A 2008 Appl. Phys. Lett. 92 83110 25 Henzie J, Lee J, Lee M H, Hasan W and Odom T W 2009 Annu. Rev. Phys. Chem. 60 26 Xia Y and Whitesides G M 1998 Annu. Rev. Mater. Sci. 28 153 27 Bender M, Plachetka U, Ran J, Fuchs A, Vratzov B, Kurz H, Glinsner T and Lindner F 2004 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 22 3229 28 Lee M H, Huntington M D, Zhou W, Yang J C and Odom T W 2011 Nano Lett. 11 311 29 Odom T W, Thalladi V R, Love J C and Whitesides G M 2002 J. Am. Chem. Soc. 124 12112 30 Henzie J, Barton J E, Stender C L and Odom T W 2006 Acc. Chem. Res. 39 249 31 Webb J A, Ou Y C, Faley S, Paul E P, Hittinger J P, Cutright C C, Lin E C, Bellan L M and Bardhan R 2017 ACS Omega 2 3583 32 Ou Y C, Webb J A, Faley S, Shae D, Talbert E M, Lin S, Cutright C C, Wilson J T, Bellan L M and Bardhan R 2016 ACS Omega 1 234 33 DasGupta D, von Maltzahn G, Ghosh S, Bhatia S N, Das S K and Chakraborty S 2009 Appl. Phys. Lett. 95 233701 34 Nie S and Emory S R 1997 Science 275 1102 35 Kneipp K, Kneipp H, Itzkan I, Dasari R R and Feld M S 1999 Chem. Rev. 99 2957 36 Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667 37 Kühner L, Semenyshyn R, Hentschel M, Neubrech F, Tar\'ín C and Giessen H 2019 ACS Sensors 4 1973 38 Kim K, Yajima J, Oh Y, Lee W, Oowada S, Nishizaka T and Kim D 2012 Small 8 892 39 Thammawongsa N, Mitatha S and Yupapin P P 2013 Artif. Cells, Nanomedicine, Biotechnol. 41 21 40 Habash R W Y, Bansal R, Krewski D and Alhafid H T 2006 Crit. Rev. Biomed. Eng. 34 41 Lin J C, Hirai S, Chiang C L, Hsu W L, Su J L and Wang Y J 2000 IEEE Trans. Microw. Theory Technol. 48 2191 42 Ierardi A M, Floridi C, Fontana F, Chini C, Giorlando F, Piacentino F, Brunese L, Pinotti G, Bacuzzi A and Carrafiello G 2013 Radiol. Med. 118 949 43 Wang K, Tavakkoli F, Wang S and Vafai K 2015 J. Biomech. 48 930 44 Kundu B 2016 Appl. Math. Comput. 285 204 45 Talaee M R and Kabiri A L I 2017 J. Mech. Med. Biol. 17 1750072 46 Lin S M and Li C Y 2017 J. Mech. Med. Biol. 17 1750029 47 Deshazer G, Prakash P, Merck D and Haemmerich D 2017 Int. J. Hyperth. 33 74 48 Paul A K, Bandaru N K, Narasimhan A and Das S K 2014 International Heat Transfer Conference Digital Library (New York: Begel House Inc.) 49 Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F and El-Sayed M A 2008 Cancer Lett. 269 57 50 Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549 51 Jiang Y, Zhao J, Li W, Yang Y, Liu J and Qian Z 2017 Med. Biol. Eng. Comput. 55 2027 52 Curto S, Taj-Eldin M, Fairchild D and Prakash P 2015 Med. Phys. 42 6152 53 Selmi M, Bin Dukhyil A A and Belmabrouk H 2020 Appl. Sci. 10 211 54 Rattanadecho P and Keangin P 2013 Int. J. Heat Mass Transf. 58 457 55 Kuang M, Lu M D, Xie X Y, Xu H X, Mo L Q, Liu G J, Xu Z F, Zheng Y L and Liang J Y 2007 Radiology 242 914 56 Prakash P, Salgaonkar V A, Clif Burdette E and Diederich C J 2012 Med. Phys. 39 7338 57 Lubner M G, Brace C L, Hinshaw J L and Lee Jr F T 10.1016/j.jvir.2010.04.007 2010 J. Vasc. Interv. Radiol. 21 S192 58 Von Maltzahn G, Park J H, Agrawal A, Bandaru N K, Das S K, Sailor M J and Bhatia S N 2009 Cancer Res. 69 3892 59 Zhao W and Karp J M 2009 Nat. Mater. 8 453 60 Abbas A, El-Said M and Mahmoud S F2013 PIERS Proceedings 61 Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419 62 Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257 63 Agio M and Al\`u A2013 Optical Antennas (Cambridge: Cambridge University Press) 64 Simanovskii D M, Mackanos M A, Irani A R, O'Connell-Rodwell C E, Contag C H, Schwettman H A and Palanker D V 2006 Phys. Rev. E 74 11915 65 Moritz A R and Henriques Jr F C1947 Am. J. Pathol. 23 695 66 Tehrani M H H, Soltani M, Kashkooli F M and Raahemifar K 2020 PLoS One 15 e0233219 67 Trujillo M and Berjano E 2013 Int. J. Hyperth. 29 590 68 Cavagnaro M, Amabile C, Bernardi P, Pisa S and Tosoratti N 2010 IEEE Trans. Biomed. Eng. 58 949 69 Shi J, Chen Z and Shi M 2009 Appl. Therm. Eng. 29 1792 70 Cho J, Yoon J, Cho S, Kwon K, Lim S, Kim D, Lee E S, Kim C H, Choi J W and Cheon C 2006 Int. J. cancer 119 593 71 Keangin P, Rattanadecho P and Wessapan T 2011 Int. Commun. Heat Mass Transf. 38 757 72 Wu X, Liu B and Xu B 2016 Appl. Therm. Eng. 107 501 73 Singh S and Repaka R 2017 Appl. Therm. Eng. 125 443 74 Jasiński M Mol. Cell. Biomech. 10 183 75 Novotny L 2007 Phys. Rev. Lett. 98 266802 76 Aizpurua J, Bryant G W, Richter L J, De Abajo F J G, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420 77 Cubukcu E and Capasso F 2009 Appl. Phys. Lett. 95 201101 78 Dahmen C, Schmidt B and von Plessen G 2007 Nano Lett. 7 318 79 Massa E, Maier S A and Giannini V 2013 New J. Phys. 15 63013 80 Romero I, Aizpurua J, Bryant G W and De Abajo F J G 2006 Opt. Express 14 9988 81 Sundaramurthy A, Crozier K B, Kino G S, Fromm D P, Schuck P J and Moerner W E 2005 Phys. Rev. B 72 165409 82 Beversluis M R, Bouhelier A and Novotny L 2003 Phys. Rev. B 68 115433 83 Bouhelier A, Beversluis M, Hartschuh A and Novotny L 2003 Phys. Rev. Lett. 90 13903 84 BEA S and Teich M C1991 Wiley 313 85 Ji H S, Kim J H and Kumar S 2003 Opt. Lett. 28 1147 86 Sato S 1979 Jpn. J. Appl. Phys. 18 1679 87 Algorri J F, Zografopoulos D C, Urruchi V and Sànchez-Pena J M 2019 Crystals 9 272 88 Zohrabi M, Cormack R H and Gopinath J T 2016 Opt. Express 24 23798 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|