Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020303    DOI: 10.1088/1674-1056/abb7f5
GENERAL Prev   Next  

Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators

Qin Wu(吴琴)†
School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
Abstract  We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators, where the tunable two-mode squeezing spectrum can be observed from the output field. It is realized that the squeezing orientation can be controlled by the detuning between the left cavity and pump laser. Especially, both cavity decay and environment temperature play a positive role in generating better pondermotive squeezing light. Strong squeezing spectra with a wide squeezing frequency range can be obtained by appropriate choice of parameters present in our optomechanical system.
Keywords:  ponderomotive squeezing light      optomechanical system      coupled resonators  
Received:  15 July 2020      Revised:  24 August 2020      Accepted manuscript online:  14 September 2020
PACS:  03.67.-a (Quantum information)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  46.80.+j (Measurement methods and techniques in continuum mechanics of solids)  
Fund: Project supported by the Doctoral Program of Guangdong Natural Science Foundation,China (Grant No. 2018A030310109), the Doctoral Project of Guangdong Medical University (Grant No. B2017019), and the Project of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education of China (Grant No. QSQC1808).
Corresponding Authors:  Corresponding author. E-mail: wuqin@gdmu.edu.cn   

Cite this article: 

Qin Wu(吴琴) Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators 2021 Chin. Phys. B 30 020303

1 Kippenberg T J and Vahala K J 2008 Science 321 1172
2 Gebremariam T, Zeng Y X, Mazaheri M and Li C 2020 Sci. Chin.-Phys. Mech. Astron. 63 210311
3 Zhao W, Zhang S D, Miranowicz A and Jing H 2020 Sci. Chin.-Phys. Mech. Astron. 63 224211
4 Marquardt F and Girvin S M 2009 Physics 2 40
5 Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
6 Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621
7 Yan X B 2020 Phys. Rev. A 101 043820
8 Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826
9 Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
10 Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204
11 Wu S C, Qin L Q, Lu J, Wang Z Y 2019 Chin. Phys. B 28 074204
12 Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Diuseppe G and Vitali D 2013 Phys. Rev. A 88 013804
13 Zheng M H, Wang T, Wang D Y, Bai C H, Zhang S, An C S and Wang H F 2019 Sci. Chin.-Phys. Mech. Astron. 62 950311
14 Rocheleau T, Ndukum T, Machlin C, Hertzberg J, Clerk A and Schwab K 2010 Nature 463 72
15 Miao H, Danilishin S, M\"uller-Ebhardt H and Chen Y 2010 New J. Phys. 12 083032
16 Liu Y C, Xiao Y F, Luan X S and Wong C W 2015 Sci. Chin.-Phys. Mech. Astron. 58 050305
17 Lau H K and Clerk A 2020 Phys. Rev. Lett. 124 103602
18 Yan Y, Gu W J and Li G X 2015 Sci. Chin.-Phys. Mech. Astron. 58 050306
19 Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
20 Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710
21 Yan X B, Deng Z J, Tian X D and Wu J H 2019 Opt. Express 27 24393
22 Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
23 Ghobadi R, Kumar S, Pepper B, Bouwmeester D, Lvovsky A I and Simon C 2014 Phys. Rev. Lett. 112 080503
24 Hu C S, Lin X Y, Shen L T, Su W J, Jiang Y K, Wu H Z and Zheng S B 2020 Opt. Express 28 1492
25 Zhang J, Mu Q X, Zhang W Z 2018 Chin. Phys. B 27 040304
26 Woolley M J, Doherty A C, Milburn G J and Schwab K C2008 Phys. Rev. A 78 06230
27 Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824
28 Asjad M, Agarwal G S, Kim M S, Tombesi P, Di Giuseppe G and Vitali D 2014 Phys. Rev. A 89 023849
29 Liu L, Hou B P, Zhao X H and Tang B 2019 Opt. Express 27 8361
30 Liu S, Yang W X, Zhu Z, Shui T and Li L 2018 Opt. Lett. 43 9
31 Huang S, Chen A 2018 Phys. Rev. A 98 063843
32 Xiong B, Li X, Chao S L and Zhou L 2018 Opt. Lett. 43 6053
33 Zhang Z C, Wang Y P, Yu Y F and Zhang Z M 2018 Opt. Express 26 11915
34 Xiong B, Li Xun, Chao S L, Yang Z, Zhang W Z, Zhang W P and Zhou L 2020 Photonics Research 8 151
35 Caves C M et al. 1980 Rev. Mod. Phys. 52 341
36 Abadie J et al. 2011 Nat. Phys. 7 962
37 Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
38 Fabre Cet al.1994 Phys. Rev. A 49 1377
39 Mancini E and Tombesi P 1994 Phys. Rev. A 49 4055
40 Qu K N and Agarwal G S 2014 New. J. Phys. 16 113004
41 Kronwald A, Marquardt F and Clerk A A 2014 New. J. Phys. 16 063058
42 L\"u X Y, Liao J Q, Tian L and Nori Franco 2015 Phys. Rev. A 91 013834
43 Bai C H, Wang D Y, Zhang S and Wang H F 2019 Sci. Chin.-Phys. Mech. Astron. 62 970311
44 Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N and Stamper-Kum D M 2012 Nature 448 476
45 Safavi-Naeini A H, Gr \" oblacher S, Hill J T, Chan J, Aspelmeyer M and Painter O 2013 Nature 500 185
46 Purdy T P, Yu P L, Peterson R W, Kampel N S and Regal C A 2013 Phys. Rev. X 3 031012
47 Pontin A, Biancofiore C, Serra E, Borrielli A, Cataliotti F S, Marino F, Prodi G A, Bonaldi M, Marin F andVitali D 2014 Phys. Rev. A 89 033810
48 Ockeloen-Korppi C F et al. 2018 Nature 556 478
49 Gu W J and Yi Z 2014 Opt. Commun. 333 261
50 Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 017979
51 Feng X M, Xiao Y, Yu Y F and Zhang Z M 2015 Chin. Phys. B 24 050301
52 Wu Q 2015 Chin. Phys. B 25 010304
53 He Q, Badshah F, Basit A, Guo P, Zhang X H, Zhou Z and Li L P 2020 J. Phys. B: At. Mol. Opt. Phys. 37 911
54 Kleckner D, Marshall W, de Dood Michiel J A, Dniyari K N, Pors B J, Irvine W T M and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901
55 Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds K R W 2011 Nature 471 204
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[7] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[8] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[9] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[12] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[13] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[14] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[15] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
No Suggested Reading articles found!