|
|
Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators |
Qin Wu(吴琴)† |
School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China |
|
|
Abstract We investigate properties of the ponderomotive squeezing in an optomechanical system with two coupled resonators, where the tunable two-mode squeezing spectrum can be observed from the output field. It is realized that the squeezing orientation can be controlled by the detuning between the left cavity and pump laser. Especially, both cavity decay and environment temperature play a positive role in generating better pondermotive squeezing light. Strong squeezing spectra with a wide squeezing frequency range can be obtained by appropriate choice of parameters present in our optomechanical system.
|
Received: 15 July 2020
Revised: 24 August 2020
Accepted manuscript online: 14 September 2020
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
46.80.+j
|
(Measurement methods and techniques in continuum mechanics of solids)
|
|
Fund: Project supported by the Doctoral Program of Guangdong Natural Science Foundation,China (Grant No. 2018A030310109), the Doctoral Project of Guangdong Medical University (Grant No. B2017019), and the Project of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education of China (Grant No. QSQC1808). |
Corresponding Authors:
†Corresponding author. E-mail: wuqin@gdmu.edu.cn
|
Cite this article:
Qin Wu(吴琴) Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators 2021 Chin. Phys. B 30 020303
|
1 Kippenberg T J and Vahala K J 2008 Science 321 1172 2 Gebremariam T, Zeng Y X, Mazaheri M and Li C 2020 Sci. Chin.-Phys. Mech. Astron. 63 210311 3 Zhao W, Zhang S D, Miranowicz A and Jing H 2020 Sci. Chin.-Phys. Mech. Astron. 63 224211 4 Marquardt F and Girvin S M 2009 Physics 2 40 5 Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602 6 Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621 7 Yan X B 2020 Phys. Rev. A 101 043820 8 Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826 9 Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505 10 Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204 11 Wu S C, Qin L Q, Lu J, Wang Z Y 2019 Chin. Phys. B 28 074204 12 Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Diuseppe G and Vitali D 2013 Phys. Rev. A 88 013804 13 Zheng M H, Wang T, Wang D Y, Bai C H, Zhang S, An C S and Wang H F 2019 Sci. Chin.-Phys. Mech. Astron. 62 950311 14 Rocheleau T, Ndukum T, Machlin C, Hertzberg J, Clerk A and Schwab K 2010 Nature 463 72 15 Miao H, Danilishin S, M\"uller-Ebhardt H and Chen Y 2010 New J. Phys. 12 083032 16 Liu Y C, Xiao Y F, Luan X S and Wong C W 2015 Sci. Chin.-Phys. Mech. Astron. 58 050305 17 Lau H K and Clerk A 2020 Phys. Rev. Lett. 124 103602 18 Yan Y, Gu W J and Li G X 2015 Sci. Chin.-Phys. Mech. Astron. 58 050306 19 Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 20 Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710 21 Yan X B, Deng Z J, Tian X D and Wu J H 2019 Opt. Express 27 24393 22 Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302 23 Ghobadi R, Kumar S, Pepper B, Bouwmeester D, Lvovsky A I and Simon C 2014 Phys. Rev. Lett. 112 080503 24 Hu C S, Lin X Y, Shen L T, Su W J, Jiang Y K, Wu H Z and Zheng S B 2020 Opt. Express 28 1492 25 Zhang J, Mu Q X, Zhang W Z 2018 Chin. Phys. B 27 040304 26 Woolley M J, Doherty A C, Milburn G J and Schwab K C2008 Phys. Rev. A 78 06230 27 Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824 28 Asjad M, Agarwal G S, Kim M S, Tombesi P, Di Giuseppe G and Vitali D 2014 Phys. Rev. A 89 023849 29 Liu L, Hou B P, Zhao X H and Tang B 2019 Opt. Express 27 8361 30 Liu S, Yang W X, Zhu Z, Shui T and Li L 2018 Opt. Lett. 43 9 31 Huang S, Chen A 2018 Phys. Rev. A 98 063843 32 Xiong B, Li X, Chao S L and Zhou L 2018 Opt. Lett. 43 6053 33 Zhang Z C, Wang Y P, Yu Y F and Zhang Z M 2018 Opt. Express 26 11915 34 Xiong B, Li Xun, Chao S L, Yang Z, Zhang W Z, Zhang W P and Zhou L 2020 Photonics Research 8 151 35 Caves C M et al. 1980 Rev. Mod. Phys. 52 341 36 Abadie J et al. 2011 Nat. Phys. 7 962 37 Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 38 Fabre Cet al.1994 Phys. Rev. A 49 1377 39 Mancini E and Tombesi P 1994 Phys. Rev. A 49 4055 40 Qu K N and Agarwal G S 2014 New. J. Phys. 16 113004 41 Kronwald A, Marquardt F and Clerk A A 2014 New. J. Phys. 16 063058 42 L\"u X Y, Liao J Q, Tian L and Nori Franco 2015 Phys. Rev. A 91 013834 43 Bai C H, Wang D Y, Zhang S and Wang H F 2019 Sci. Chin.-Phys. Mech. Astron. 62 970311 44 Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N and Stamper-Kum D M 2012 Nature 448 476 45 Safavi-Naeini A H, Gr \" oblacher S, Hill J T, Chan J, Aspelmeyer M and Painter O 2013 Nature 500 185 46 Purdy T P, Yu P L, Peterson R W, Kampel N S and Regal C A 2013 Phys. Rev. X 3 031012 47 Pontin A, Biancofiore C, Serra E, Borrielli A, Cataliotti F S, Marino F, Prodi G A, Bonaldi M, Marin F andVitali D 2014 Phys. Rev. A 89 033810 48 Ockeloen-Korppi C F et al. 2018 Nature 556 478 49 Gu W J and Yi Z 2014 Opt. Commun. 333 261 50 Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 017979 51 Feng X M, Xiao Y, Yu Y F and Zhang Z M 2015 Chin. Phys. B 24 050301 52 Wu Q 2015 Chin. Phys. B 25 010304 53 He Q, Badshah F, Basit A, Guo P, Zhang X H, Zhou Z and Li L P 2020 J. Phys. B: At. Mol. Opt. Phys. 37 911 54 Kleckner D, Marshall W, de Dood Michiel J A, Dniyari K N, Pors B J, Irvine W T M and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901 55 Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds K R W 2011 Nature 471 204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|