Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040205    DOI: 10.1088/1674-1056/ac587d
GENERAL Prev   Next  

Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network

Xiaojing Zhong(钟晓静)1, Yukun Yang(杨宇琨)1, Runqing Miao(苗润青)2, Yuqing Peng(彭雨晴)1,†, and Guiyun Liu(刘贵云)1,‡
1 School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China;
2 College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
Abstract  We propose a novel rumor propagation model with guidance mechanism in heterogeneous complex networks. Firstly, the sharp threshold of rumor propagation, global stability of the information-equilibrium and information-prevailing-equilibrium under R0 <1 and R0> 1 is carried out by Lyapunov method and LaSalle's invariant principle. Next, we design an aperiodically intermittent stochastic stabilization method to suppress the rumor propagation. By using the Itô formula and exponential martingale inequality, the expression of the minimum control intensity is calculated. This method can effectively stabilize the rumor propagation by choosing a suitable perturb intensity and a perturb time ratio, while minimizing the control cost. Finally, numerical examples are given to illustrate the analysis and method of the paper.
Keywords:  guidance mechanism      heterogenous network      global dynamic analysis      aperiodically intermittent stochastic stabilization  
Received:  24 October 2021      Revised:  13 January 2022      Accepted manuscript online:  25 February 2022
PACS:  02.50.Fz (Stochastic analysis)  
  02.40.Vh (Global analysis and analysis on manifolds)  
  02.30.-f (Function theory, analysis)  
Fund: Project supported by the Guangzhou Science and Technology Project (Grant No. 20210202710) and Scientific Research Project of Guangzhou University (Grant No. YG2020010).
Corresponding Authors:  Yuqing Peng, Guiyun Liu     E-mail:  sjcpyq@gzhu.edu.cn;liugy@gzhu.edu.cn

Cite this article: 

Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云) Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network 2022 Chin. Phys. B 31 040205

[1] Galam S 2003 Phys. A 320 571
[2] Wu W W 2013 Appl. Mech. Mater. 380 2724
[3] DiFonzo N, Bordia P and Rosnow R L 1994 Organiz. Dyn. 23 47
[4] Bordia P and DiFonzo N 2017 Psychological motivations in rumor spread, 1st edn. (New York:Routledge) pp. 87-101
[5] Hu H B and Wang X F 2008 Phys. A 387 3769
[6] Kosfeld M 2005 J. Math. Econ. 41 646
[7] Kimmel A J 2004 J. Behavioral Finan. 5 134
[8] Cheng Y Y, Huo L A and Zhao L J 2020 Phys. A 559 125061
[9] Cheng Y Y, Huo L A and Zhao L J 2021 Information Sci. 564 237
[10] Dang Z K, Li L X, Ni W, Liu R P, Peng H P and Yang Y X 2021 Information Sci. 574 377
[11] Jiang G Y, Li S P and Li M L 2020 Phys. A 558 125005
[12] Bodaghi A and Oliveira J 2020 Phys. A 160 674
[13] Tian Y and Ding X J 2019 Appl. Math. Comput. 363 124599
[14] Cheng Y Y and Huo L A 2019 Phys. A 536 120940
[15] Li J R, Jiang H J, Yu Z Y and Hu C 2019 Appl. Math. Comput. 359 374
[16] Huang H, Chen Y H and Ma Y F 2021 Appl. Math. Comput. 388 125536
[17] Zan Y L 2018 Chaos, Solitons & Fract. 110 191
[18] Li J R, Jiang H J, Mei X H, Hu C and Zhang G L 2020 Information Sci. 536 391
[19] Trpevski D and Tang W K S and Kocarev L 2010 Phys. Rev. E 81 056102
[20] Jia F J, Lv G Y and Zou G A 2018 Math. Methods Appl. Sci. 41 1661
[21] Liu X D, Li T and Tian M 2018 Adv. Diff. Equ. 2018 1
[22] Xu H, Li T, Liu X D, Liu W J and Dong J 2019 Phys. A 525 234
[23] Wang J L, Jiang H J, Ma T L and Hu C 2019 Chaos, Solitons & Fract. 126 148
[24] Li H J and Yang K 2020 The ANZIAM J. 62 185
[25] Chen C D, Gao D P and Guo P 2021 AIMS Math. 6 1234
[26] Li M, Zhang H, Georgescu P and Li T 2021 Phys. A 562 125321
[27] Dauhoo M Z, Juggurnath D and Adam N R B 2016 Math. Social Sci. 82 85
[28] Huo L A and Dong Y F 2020 Math. Methods Appl. Sci. 43 6903
[29] Huo L A, Dong Y F and Lin T T 2021 Chin. Phys. B 30 080201
[30] Zhang J P, Guo H M, Jing W J and Jin Z 2019 Acta Phys. Sin. 68 150501 (in Chinese)
[31] Huo L A, Wang L and Zhao X M 2019 Phys. A 517 551
[32] Yu S Z, Yu Z Y, Jiang H J and Li J R 2021 Chaos, Solitons & Fract. 145 110806
[33] Li H J and Yang K 2020 The ANZIAM J. 62 185
[34] Zhang B, Lim C C, Shi P, Xie S L and Deng F Q 2019 IEEE Trans. Auto. Control 65 1318
[35] Liu X W and Chen T P 2015 IEEE Trans. Auto. Control 60 3316
[36] Christensen R K, Lindén H, Nakamura M and Barkat T R 2019 Cell Rep. 29 2041
[37] Liu Q and Jiang D Q 2021 Appl. Math. Lett. 112 106756
[38] Zhong X J, Peng B H, Deng F Q and Liu G Y 2020 Complexity 2020 13
[39] Li M Y and Shuai Z S 2010 J. Diff. Equ. 248 1
[40] Mao X 2007 Stochastic differential equations and applications, 2nd edn. (Philadelphia:Woodhead) pp. 6-45
[1] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[2] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[3] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[4] Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force
Jinlian Jiang(姜金连), Wei Xu(徐伟), Ping Han(韩平), and Lizhi Niu(牛立志). Chin. Phys. B, 2022, 31(6): 060203.
[5] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[6] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[7] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[8] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[9] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
[10] Model and application of bidirectional pedestrian flows at signalized crosswalks
Tao Zhang(张涛), Gang Ren(任刚), Zhi-Gang Yu(俞志钢), Yang Yang(杨阳). Chin. Phys. B, 2018, 27(7): 078901.
[11] Stochastic stability of the derivative unscented Kalman filter
Hu Gao-Ge (胡高歌), Gao She-Sheng (高社生), Zhong Yong-Min (种永民), Gao Bing-Bing (高兵兵). Chin. Phys. B, 2015, 24(7): 070202.
[12] Effects of two types of noise and switching on the asymptotic dynamics of an epidemic model
Xu Wei (徐伟), Wang Xi-Ying (王喜英), Liu Xin-Zhi (刘新芝). Chin. Phys. B, 2015, 24(5): 050204.
[13] Improved locality-sensitive hashing method for the approximate nearest neighbor problem
Lu Ying-Hua (陆颖华), Ma Ting-Huai (马廷淮), Zhong Shui-Ming (钟水明), Cao Jie (曹杰), Wang Xin (王新), Abdullah Al-Dhelaan. Chin. Phys. B, 2014, 23(8): 080203.
[14] Early-warning signals for an outbreak of the influenza pandemic
Ren Di(任迪) and Gao Jie(高洁) . Chin. Phys. B, 2011, 20(12): 128701.
[15] Linear matrix inequality approach for robust stability analysis for stochastic neural networks with time-varying delay
S. Lakshmanan and P. Balasubramaniam. Chin. Phys. B, 2011, 20(4): 040204.
No Suggested Reading articles found!