|
|
Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling |
Hong-Yu Lin(林宏宇)1,2, Hui Yang(杨慧)1, and Zhi-Hai Yao(姚治海)1,† |
1 Department of Physics, Changchun University of Science and Technology, Changchun 130022, China; 2 College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China |
|
|
Abstract The unconventional photon blockade (UPB) for low-frequency mode is investigated in a three-mode system with double second-order nonlinearity. By analyzing the Hamiltonian of the system, the optimal analytic condition of UPB in low-frequency mode is obtained. The numerical results are calculated by solving the master equation in a truncated Fock space, which agrees well with the analytic conditions. Through the numerical analysis of the system, it is found that the weak driving strength is favorable for the system to realize the UPB effect, and the system is insensitive to the changes of attenuation rate and environmental temperature. The comparison with the two-mode system and another similar three-mode system shows that, under similar system parameters, the UPB effect of this double two-order nonlinear system is more obvious.
|
Received: 14 June 2020
Revised: 16 July 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
14.70.Bh
|
(Photons)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11647054) and the Natural Science Foundation of Jilin Province, China (Grant No. JJKH20181088KJ). |
Corresponding Authors:
†Corresponding author. E-mail: yaozh@cust.edu.cn
|
Cite this article:
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海) Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling 2020 Chin. Phys. B 29 120304
|
[1] Scarani V, Bechmann P H and Peev M Rev. Mod. Phys. 81 1301 DOI: 10.1103/RevModPhys.81.13012009 [2] Giovannetti V, Lloyd S and Maccone L Nat. Photon. 5 222 DOI: 10.1038/nphoton.2011.352011 [3] Knill E, Lafiamme R and Milburn G J Nature 409 46 DOI: 10.1038/350510092001 [4] Shields A J Nat. Photon. 1 215 DOI: 10.1038/nphoton.2007.462007 [5] Davidovich L Rev. Mod. Phys. 68 127 DOI: 10.1103/RevModPhys.68.1271996 [6] Buluta I, Ashhab S and Nori F Rep. Prog. Phys. 74 104401 DOI: 10.1088/0034-4885/74/10/1044012011 [7] Lang C, Bozyigit D and Eichler C Phys. Rev. Lett. 106 243601 DOI: 10.1103/PhysRevLett.106.2436012011 [8] Hofiman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J and Houck A A Phys. Rev. Lett. 107 053602 DOI: 10.1103/PhysRevLett.107.0536022011 [9] Ferretti S, Andreani L C and Gerace D Phys. Rev. A 82 013841 DOI: 10.1103/PhysRevA.82.0138412010 [10] Liao J Q and Law C K Phys. Rev. A 82 053836 DOI: 10.1103/PhysRevA.82.0538362010 [11] Miranowicz A, Paprzycka M, Liu Y X, Bajer J and Nori F Phys. Rev. A 87 023809 DOI: 10.1103/PhysRevA.87.0238092015 [12] Xie H, Lin G W, Chen X, Chen Z H and Lin X M Phys. Rev. A 93 063860 DOI: 10.1103/PhysRevA.93.0638602016 [13] Liu Y C, Hu Y W, Wong C W and Xiao Y F Chin. Phys. B 22 114213 DOI: 10.1088/1674-1056/22/11/1142132013 [14] Chen X, Liu X W, Zhang K Y, Yuan C H and Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) DOI: 10.7498/aps.64.164211 [15] Chen H J and Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) DOI: 10.7498/aps.60.124206 [16] Zhang D and Zheng Q Chin. Phys. Lett. 30 024213 DOI: 10.1088/0256-307X/30/2/0242132013 [17] Jiang C, Cui Y and Li X Chin. Phys. B 25 054204 DOI: 10.1088/1674-1056/25/5/0542042016 [18] Imamoglu A, Schmidt H, Woods G and Deutsch M Phys. Rev. Lett. 79 1467 DOI: 10.1103/PhysRevLett.79.14671997 [19] Lin H Y, Wang X Q, Yao Z H and Zou D D Opt. Express 28 17643 DOI: 10.1364/OE.3859812020 [20] Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P and Lukin M D Phys. Rev. A 87 013839 DOI: 10.1103/PhysRevA.87.0138392013 [21] Majumdar A and Gerace D Phys. Rev. B 87 235319 DOI: 10.1103/PhysRevB.87.2353192013 [22] Shen H Z, Zhou Y H and Yi X X Phys. Rev. A 90 023849 DOI: 10.1103/PhysRevA.90.0238492014 [23] Shen H Z, Zhou Y H and Yi X X Phys. Rev. A 91 063808 DOI: 10.1103/PhysRevA.91.0638082015 [24] Wang C Q Chin. Phys. Lett. 29 084209 DOI: 10.1088/0256-307X/29/8/0842092012 [25] Chang D E, Sorensen A S, Demler E A and Lukin M D Nat. Phys. 3 807 DOI: 10.1038/nphys7082007 [26] Gerace D, Tureci H E, Giovannetti V and Fazio R 2009 Nat. Phys. 5 281 DOI: 10.1038/nphys1223 [27] Fratini F, Mascarenhas E, Safari L, Poizat J P, Valente D, Gerace D and Santos M F Phys. Rev. Lett. 113 243601 DOI: 10.1103/PhysRevLett.113.2436012014 [28] Mascarenhas E, Gerace D, Valente D, Montangero S and Santos M F Europhys. Lett. 106 54003 DOI: 10.1209/0295-5075/106/540032014 [29] Liew T C H and Savona V Phys. Rev. Lett. 104 183601 DOI: 10.1103/PhysRevLett.104.1836012010 [30] Bayer M, Gutbrod T, Reithmaier J P, et al.Phys. Rev. Lett. 81 2582 DOI: 10.1103/PhysRevLett.81.25821998 [31] Rakovich Y P and Donegan J F Laser Photon. Rev. 4 179 DOI: 10.1002/lpor.2009100012010 [32] Shen H Z, Xu S, Zhou Y H, Wang G and Yi X X J. Phys. B: At. Mol. Opt. Phys. 51 035503 DOI: 10.1088/1361-6455/aa9c902018 [33] Ni H, Liang C H, Wang F, Chen Y H, Ponomarenko S A and Cai Y J Chin. Phys. B 29 064203 DOI: 10.1088/1674-1056/ab83732020 [34] Li H, Zhang S Q, Guo M, Li M X and Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese) DOI: 10.7498/aps.68.20190154 [35] Shi H Q, Xie Z Q, Xu X W and Liu N H 2018 Acta Phys. Sin. 67 044203 (in Chinese) DOI: 10.7498/aps.67.20171599 [36] Zhang W, Yu Z Y, Liu Y M and Peng Y W Phys. Rev. A 89 043832 DOI: 10.1103/PhysRevA.89.0438322014 [37] Bamba M and Ciuti C Appl. Phys. Lett. 99 171111 DOI: 10.1063/1.36562502015 [38] Xu X W and Li Y J J. Phys. B: At. Mol. Opt. Phys. 46 035502 DOI: 10.1088/0953-4075/46/3/0355022013 [39] Ferretti S, Savona V and Gerace D New J. Phys. 15 025012 DOI: 10.1088/1367-2630/15/2/0250122013 [40] Flayac H and Savona V Phys. Rev. A 88 033836 DOI: 10.1103/PhysRevA.88.0338362013 [41] Gerace D and Savona V Phys. Rev. A 89 031803 DOI: 10.1103/PhysRevA.89.0318032014 [42] Flayac H and Savona V Phys. Rev. A 95 043838 DOI: 10.1103/PhysRevA.95.0438382017 [43] Zhou Y H, Shen H Z and Yi X X Phys. Rev. A 92 023838 DOI: 10.1103/PhysRevA.92.0238382015 [44] Liu Y X, Xu X W, Miranowicz A and Nori F Phys. Rev. A 89 043818 DOI: 10.1103/PhysRevA.89.0438182014 [45] Xiang G Y and Guo G C Chin. Phys. B 22 110601 DOI: 10.1088/1674-1056/22/11/1106012013 [46] Zhang L J and Xiao M Chin. Phys. B 22 110310 DOI: 10.1088/1674-1056/22/11/1103102013 [47] Zhou Y H, Wu Q C, Ye B L, Xue L Y and Shen H Z Int. J. Theor. Phys. 58 472 DOI: 10.1007/s10773-018-3947-42019 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|