Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126201    DOI: 10.1088/1674-1056/abbbdd
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Nonperturbative effects of attraction on dynamical behaviors of glass-forming liquids

Xiaoyan Sun(孙晓燕)1, Haibo Zhang(张海波)2, Lijin Wang(王利近)3,†, Zexin Zhang(张泽新)2,4,‡, and Yuqiang Ma(马余强)5,\ccclink
1 Wenzheng College of Soochow University, Suzhou 215104, China; 2 Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China; 3 School of Physics and Materials Science, Anhui University, Hefei 230601, China; 4 College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; 5 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  We investigate systematically the effects of the inter-particle attraction on the structure and dynamical behaviors of glass-forming liquids via molecular dynamics simulations. We find that the inter-particle attraction does not influence the structure, but greatly affects the dynamics and dynamical heterogeneity of the system. After the system changes from a purely repulsive glass-forming liquid to an attractive one, the dynamics slows down and the dynamical heterogeneity becomes greater, which is found interestingly to be associated with larger cooperative rearrangement regions (CRRs). Additionally, the structures of CRRs are observed to be compact in attractive glass-forming liquids but string-like in purely repulsive ones. Our findings constitute an important contribution to the ongoing study of the role of attractions in properties of glasses and glass-forming liquids.
Keywords:  attractive glass      dynamics      dynamical heterogeneity      cooperative rearrangement regions (CRRs)  
Received:  13 August 2020      Revised:  10 September 2020      Accepted manuscript online:  28 September 2020
PACS:  64.70.P- (Glass transitions of specific systems)  
  64.70.kj (Glasses)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704270, 12074275, and 11574222), Jiangsu Planned Projects for Postdoctoral Research Funds, the PAPD Program of Jiangsu Higher Education Institutions, and the Start-up Fund from Anhui University (Grant No. S020318001/02).
Corresponding Authors:  Corresponding author. E-mail: lijin.wang@ahu.edu.cn Corresponding author. E-mail: zhangzx@suda.edu.cn §Corresponding author. E-mail: myqiang@nju.edu.cn   

Cite this article: 

Xiaoyan Sun(孙晓燕), Haibo Zhang(张海波), Lijin Wang(王利近), Zexin Zhang(张泽新), and Yuqiang Ma(马余强)\ccclink Nonperturbative effects of attraction on dynamical behaviors of glass-forming liquids 2020 Chin. Phys. B 29 126201

[1] Wang Y J Chin. Phys. B 26 014503 DOI: 10.1088/1674-1056/26/1/0145032017
[2] Adam G and Gibbs J H J. Chem. Phys. 43 139 DOI: 10.1063/1.16964421965
[3] Qiao J C, Wang Q, Crespo D, Yang Y and Pelletier J M Chin. Phys. B 26 016402 DOI: 10.1088/1674-1056/26/1/0164022017
[4] Hempel E, Hempel G, Hensel A, Schick C and Donth E J J. Phys. Chem. B 104 2460 DOI: 10.1021/jp991153f2000
[5] Richert R J. Phys.: Condens. Matter 14 R703 DOI: 10.1088/0953-8984/14/23/2012002
[6] Sillescu H J. Non-Cryst. Solids 243 81 DOI: 10.1016/S0022-3093(98)00831-X1999
[7] Donth E J. Polym. Sci. Part. B: Polym. Phys. 34 2881 DOI: 10.1002/(SICI)1099-0488(199612)34:17<2881::AID-POLB3>3.0.CO;2-U1996
[8] Donati C, Douglas J F, Kob W, Plimpton S J, Poole P H and Glotzer S C Phys. Rev. Lett. 80 2338 DOI: 10.1103/PhysRevLett.80.23381998
[9] Poon W C K, Selfe J S, Robertson M B, Ilett S M, Pirie A D and Pusey P N J. Phys. II 3 1075 DOI: 10.1051/jp2:19931841993
[10] Marcus A H, Schofield J and Rice S A Phys. Rev. E 60 5725 DOI: 10.1103/PhysRevE.60.57251999
[11] Kegel W K and van B A Science 287 290 DOI: 10.1126/science.287.5451.2902000
[12] Weeks E R, Crocker J C, Levitt A C, Schofield A and Weitz D A Science 287 627 DOI: 10.1126/science.287.5453.6272000
[13] Zhang Z, Yunker P J, Habdas P and Yodh A G Phys. Rev. Lett. 107 208303 DOI: 10.1103/PhysRevLett.107.2083032011
[14] Berthier L and Tarjus G Phys. Rev. Lett. 103 170601 DOI: 10.1103/PhysRevLett.103.1706012009
[15] Weeks J D, Chandler D and Andersen H C J. Chem. Phys. 54 5237 DOI: 10.1063/1.16748201971
[16] Longuet-Higgins H C and Widom B Mol. Phys. 8 549 DOI: 10.1080/002689764001006111964
[17] Widom B Science 157 375 DOI: 10.1126/science.157.3787.3751967
[18] Hansen J P and McDonald I R1986 Theory of Simple Liquids, 2nd Edn. (London: Academic Press)
[19] Poon W C K, Selfe J S, Robertson M B, Ilett S M, Pirie A D and Pusey P N1993 J. Phys. II 3 1075
[20] Eckert T and Bartsch E Faraday Discuss 123 51 DOI: 10.1039/b204468d2003
[21] Pham K N, Egelhaaf S U, Pusey P N and Poon W C K Phys. Rev. E 69 011503 DOI: 10.1103/PhysRevE.69.0115032004
[22] Sciortino F, Tartaglia P and Zaccarelli E Phys. Rev. Lett. 91 268301 DOI: 10.1103/PhysRevLett.91.2683012003
[23] Puertas A M, Fuchs M and Cates M E Phys. Rev. Lett. 88 098301 DOI: 10.1103/PhysRevLett.88.0983012002
[24] Zaccarelli E, Lowen H, Wessels P P F, Sciortino F, Tartaglia P and Likos C N Phys. Rev. Lett. 92 225703 DOI: 10.1103/PhysRevLett.92.2257032004
[25] Lekkerkerker H N W, Poon W C K, Pusey P N, Stroobants A and Warren P B Europhys. Lett. 20 6 DOI: 10.1209/0295-5075/20/6/0151992
[26] Lekkerkerker H N W, Tejero C F and Daanoun A Phys. Rev. Lett. 73 752 DOI: 10.1103/PhysRevLett.73.7521994
[27] Tong H, Tanaka H Phys. Rev. Lett. 22 124 DOI: 10.1103/PhysRevLett.22.1241969
[28] Bruning R, St-Onge D A, Patterson S and Kob W J. Phys.: Condens. Matter 21 035117 DOI: 10.1088/0953-8984/21/3/0351172009
[29] Kob W and Andersen H C Phys. Rev. Lett. 73 1376 DOI: 10.1103/PhysRevLett.73.13761994
[30] Chen K Acta Phys. Sin. 66 178201 (in Chinese) DOI: 10.7498/aps.66.1782012017
[31] Rabani E, Gezelter D J and Berne B J J. Chem. Phys. 107 6867 DOI: 10.1063/1.4749271997
[32] Doliwa B and Heuer A Phys. Rev. Lett. 80 4915 DOI: 10.1103/PhysRevLett.80.49151998
[33] Kasper A, Bartsch E and Sillescu H Langmuir 14 5004 DOI: 10.1021/la971089y1998
[34] Weeks E R and Weitz D A Chem. Phys. 284 361 DOI: 10.1016/S0301-0104(02)00667-52002
[35] Weeks E R and Weitz D A Phys. Rev. Lett. 89 095704 DOI: 10.1103/PhysRevLett.89.0957042002
[36] Reis P M, Ingale R A and Shattuck M D Phys. Rev. Lett. 98 188301 DOI: 10.1103/PhysRevLett.98.1883012007
[37] Toxvaerd S and Dyre J C J. Chem. Phys. 135 134501 DOI: 10.1063/1.36431232011
[38] Abate A R and Durian D J Phys. Rev. E 76 021306 DOI: 10.1103/PhysRevE.76.0213062007
[39] T V, P V, Cipelletti L, Segre P N and Weitz D A Nature 411 772 DOI: 10.1038/350810212001
[40] Foffi G, De M C, Sciortino F and Tartaglia P Phys. Rev. Lett. 94 078301 DOI: 10.1103/PhysRevLett.94.0783012005
[41] Berthier L, Biroli G, Bouchaud J P, Cipelletti L, Masri D E, Lhote D, Ladieu F and Pierno M Science 310 1797 DOI: 10.1126/science.11207142005
[42] Dauchot O, Marty G and Biroli G Phys. Rev. Lett. 95 265701 DOI: 10.1103/PhysRevLett.95.2657012005
[43] Lacevic N, Starr F W, Schorder T B and Glotzer S C J. Chem. Phys. 119 7372 DOI: 10.1063/1.16050942003
[44] Stevenson J D, Schmalian J and Wolynes P G Nat. Phys. 2 268 DOI: 10.1038/nphys2612006
[45] Ediger M D Annu. Rev. Phys. Chem. 51 99 DOI: 10.1146/annurev.physchem.51.1.992000
[46] Wang Y, Wang H G and Zhang Z X Acta Phys. Sin. 65 178705 (in Chinese) DOI: 10.1360/N972016-010042016
[47] Wang L and Xu N Phys. Rev. Lett. 112 055701 DOI: 10.1103/PhysRevLett.112.0557012014
[48] Sun Y L, Wang H G and Zhang Z X Acta Phys. Sin. 67 106401 (in Chinese) DOI: 10.7498/aps.67.201802642018
[49] Chattoraj J and Massimo P C M P Phys. Rev. Lett. 124 028001 DOI: 10.1103/PhysRevLett.124.0280012020
[50] Wang Y, Fang S, Xu N and Deng Y Phys. Rev. Lett. 124 255501 DOI: 10.1103/PhysRevLett.124.2555012020
[51] Kasper A, Bartsch E and Sillescu H Langmuir 14 5004 DOI: 10.1021/la971089y1998
[52] Kasper A, Bartsch E and Sillescu H Langmuir 14 5004 DOI: 10.1021/la971089y1998
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[8] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[13] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[14] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[15] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
No Suggested Reading articles found!