INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection |
Zhiwei He(何志威)1, Chenggui Yao(姚成贵)2,†, Jianwei Shuai(帅建伟)3,‡, and Tadashi Nakano4 |
1 Department of Mathematics, Shaoxing University, Shaoxing 312000, China; 2 College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314000, China; 3 Department of Physics, State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China; 4 Graduate School of Frontier Biosciences, Osaka University, 5408570, Japan |
|
|
Abstract Many animals can detect the multi-frequency signals from their external surroundings. The understanding for underlying mechanism of signal detection can apply the theory of vibrational resonance, in which the moderate high frequency driving can maximize the nonlinear system's response to the low frequency subthreshold signal. In this work, we study the roles of chemical autapse on the vibrational resonance in a single neuron for signal detection. We reveal that the vibrational resonance is strengthened significantly by the inhibitory autapse in the neuron, while it is weakened typically by the excitatory autapse. It is generally believed that the inhibitory synapse has a suppressive effect in neuronal dynamics. However, we find that the detection of the neuron to the low frequency subthreshold signal can be improved greatly by the inhibitory autapse. Our finding indicates that the inhibitory synapse may act constructively on the detection of weak signal in the brain and neuronal system.
|
Received: 16 July 2020
Revised: 09 August 2020
Accepted manuscript online: 14 September 2020
|
PACS:
|
87.19.lj
|
(Neuronal network dynamics)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
87.19.lm
|
(Synchronization in the nervous system)
|
|
Fund: Project supported partially by the National Natural Science Foundation of China (Grant Nos. 11675112, 11705116, 11675134, and 11874310) and the National Natural Science Foundation of China for the 111 Project (Grant No. B16029). |
Corresponding Authors:
†Corresponding author. E-mail: yaochenggui2006@126.com ‡Corresponding author. E-mail: jianweishuai@xmu.edu.cn
|
Cite this article:
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection 2020 Chin. Phys. B 29 128702
|
[1] Victor J D and Conte M M Vis. Neurosci. 17 959 DOI: 10.1017/S09525238001761512000 [3] Gherm V, Zernov N, Lundborg B and Vastberg A J. Atmos. Sol. Terr. Phys. 59 1831 DOI: 10.1016/S1364-6826(97)00011-41997 [4] Heiligenberg W1991 Neural Nets in Electric Fish (Cambridge: MIT Press) [5] Middleton J, Longtin A J B and Maler L Proc. Natl. Acad. Sci. USA 103 14596 DOI: 10.1073/pnas.06041031032006 [6] Stamper S A, Fortune E S and Chacron M J J. Exp. Biol. 216 2393 DOI: 10.1242/jeb.0823212013 [7] Wang G Y and Chen D J IEEE Trans. Ind. Electron. 46 440 DOI: 10.1109/41.7537831999 [8] Modestino J W and Ningo A Y Trans. Inform. Theory. 25 592 DOI: 10.1109/TIT.1979.10560861979 [9] Wiesenfeld K and Moss F Nature 373 33 DOI: 10.1038/373033a01995 [10] Gammaitoni L, Hanggi P, Jung P and Marchesoni F Rev. Mod. Phys. 70 223 DOI: 10.1103/RevModPhys.70.2231998 [11] Landa P S and McClintock P V E J. Phys. A: Math. Gen. 33 L433 DOI: 10.1088/0305-4470/33/45/1032000 [12] Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J and Sanjuán M A F Phys. Rev. E 67 066119 DOI: 10.1103/PhysRevE.67.0661192003 [13] Blekhman I I and Landa P S Int. J. Non-Linear Mech. 39 421 DOI: 10.1016/S0020-7462(02)00201-92004 [14] Ullner E, Zaikin A, Garcíía-Ojalvo J, Bascones R and Kurths J Phys. Lett. A 312 348 DOI: 10.1016/S0375-9601(03)00681-92003 [15] Casado-Pascual J and Baltanás J P Phys. Rev. E 69 046108 DOI: 10.1103/PhysRevE.69.0461082004 [16] Yao C G Liu Y and Zhan M Phys. Rev. E 83 061122 DOI: 10.1103/PhysRevE.83.0611222011 [17] Yao C G and Zhan M Phys. Rev. E 81 061129 DOI: 10.1103/PhysRevE.81.0611292010 [18] Chizhevsky V N, Smeu E and Giacomelli G Phys. Rev. Lett. 91 220602 DOI: 10.1103/PhysRevLett.91.2206022003 [19] Wu X X, Yao C G and Shuai J W Sci. Rep. 5 7684 DOI: 10.1038/srep076842015 [20] Yang L J, Liu W H, Yi M, Wang C J, Zhu Q M, Zhan X and Jia Y Phys. Rev. E 86 016209 DOI: 10.1103/PhysRevE.86.0162092012 [21] Kaplan D T, Clay J R, Manning T, Glass L, Guevara M R and Shrier A Phys. Rev. Lett. 76 4074 DOI: 10.1103/PhysRevLett.76.40741996 [22] He Z W and Yao C G Sci. China Tech. Sc. 63 2339 DOI: 10.1007/s11431-020-1659-y2020 [23] Yao C G, He Z W, Luo J M and Shuai J W Phys. Rev. E 91 052901 DOI: 10.1103/PhysRevE.91.0529012015 [24] Wang L, Zhang P M, Liang P J, Pei J and Qiu Y H Chin. Phys. Lett. 31 070501 DOI: 10.1088/0256-307X/31/7/0705012014 [25] Ozer M, Uzuntarla M, Kayikcioglu T and Graham L J. Phys. Lett. A 373 964 DOI: 10.1016/j.physleta.2009.01.0342008 [26] Liang L S, Zhang J Q and Liu L Z Chin. Phys. Lett. 31 050502 DOI: 10.1088/0256-307X/31/5/0505022014 [27] Yu Y G, Wang W, Wang J F and Liu F Phys. Rev. E 63 021907 DOI: 10.1103/PhysRevE.63.0219072001 [28] Zhang X, Huang H B, Li P J, Wu F P, Wu W J and Jiang M Chin. Phys. Lett. 29 120501 DOI: 10.1088/0256-307X/29/12/1205012012 [29] Cao B, Guan L N and Gu H G Acta Phys. Sin. 67 240502 (in Chinese) DOI: 10.7498/aps.67.201816752018 [30] Van Der Loos H and Glaser E M Brain Res. 48 355 DOI: 10.1016/0006-8993(72)90189-81972 [31] Bekkers J M Curr. Biol. 8 R52 DOI: 10.1016/S0960-9822(98)70033-81998 [32] Flight M H Nat. Rev. Neurosci. 10 316 DOI: 10.1038/nrn26372009 [33] Bekkers J M Curr. Biol. 13 R433 DOI: 10.1016/S0960-9822(03)00363-42003 [34] Bacci A and Huguenard J R Neuron 49 119 DOI: 10.1016/j.neuron.2005.12.0142006 [35] Bacci A, Huguenard J R and Prince D A J. Neurosci. 23 859 DOI: 10.1523/JNEUROSCI.23-03-00859.20032003 [36] Yi M and Yao C G Complexity 2020 1292417 DOI: 2020 [37] Qin H X, Ma J, Wang C N and Wu Y PLoS One 9 e100849 DOI: 10.1371/journal.pone.01008492014 [38] Wei C L and Zhao X Chin. Phys. B 28 013201 DOI: 10.1088/1674-1056/28/1/0132012019 [39] Usha K and Subha P A Chin. Phys. B 28 020502 DOI: 10.1088/1674-1056/28/2/0205022019 [40] Li D X, Bing J and Ye L Y 2019 Acta Phys. Sin. 68 180502 (in Chinese) DOI: 10.7498/aps.68.20190197 [41] Li Y, Schmid G and Haggi P Phys. Rev. E 82 061907 DOI: 10.1103/PhysRevE.82.0619072010 [42] Chen J X, Zhang H, Qiao Li Y, Liang H and Sun W G Commun. Nonlinear Sci. Numer. Simulat. 54 202 DOI: 10.1016/j.cnsns.2017.05.0342018 [43] Yu H T, Cai L H, Wu X Y, Wang J, Liu J and Zhang H Chin. Phys. B 28 048702 DOI: 10.1088/1674-1056/28/4/0487022019 [44] Yao C G, He Z W, Nakano T and Shuai J W Chaos 28 083112 DOI: 10.1063/1.50187072018 [45] Song X L, Wang H T and Chen Y Nonlinear Dyn. 96 2341 DOI: 10.1007/s11071-019-04925-72019 [46] Chen J X, Xiao J, Qian L Y and Xu J R Nonlinear Sci. Numer. Simul. 59 331 DOI: 10.1016/j.cnsns.2017.11.0142018 [47] Ma J and Tang J Sci. China Tech. Sc. 62 2038 DOI: 10.1007/s11431-019-9551-42019 [48] Lv M, Ma J, Yao Y G and Alzahrani F2015 Sci. China Tech. Sc. 58 448 [49] Yao C G He Z W and Nakano T Nonlinear Dyn. 97 1425 DOI: 10.1007/s11071-019-05060-z2019 [50] Qian N Proc. Natl. Acad. Sci. USA 87 8145 DOI: 10.1073/pnas.87.20.81451990 [51] Eccles J C Annu. Rev. Neurosci. 5 325 DOI: 10.1146/annurev.ne.05.030182.0015451982 [52] Hodgkin A L and Huxley A F J. Physiol. 117 500 DOI: 10.1113/jphysiol.1952.sp0047641952 [53] Burić N, Todorović K and Vasović N Phy. Rev. E 78 036211 DOI: 10.1103/PhysRevE.78.0362112008 [54] Belykh I, Lange E and Hasler M Phy. Rev. Lett. 94 188101 DOI: 10.1103/PhysRevLett.94.1881012005 [55] Schutter E D1988 Computational Modeling Methods for Neuroscientists (Cambridge: MIT Press) [56] Wang S T, Wang W and Liu F Phys. Rev. Lett. 96 018103 DOI: 10.1103/PhysRevLett.96.0181032006 [57] Connelly W M and Lees G J. Physiol. 588 2047 DOI: 10.1113/tjp.2010.588.issue-122010 [58] Ozera M, Perc M, Uzuntarla M and Koklukayab E NeuroReport 21 338 DOI: 10.1097/WNR.0b013e328336ee622010 [59] Lübke J, Markram H, Frotscher M and Sakmann B J. Neurosci. 16 3209 DOI: 10.1523/JNEUROSCI.16-10-03209.19961996 [60] Wang C N, Guo S L, Xu Y, Ma J, Tang J Alzahrani F and Aatef H 2017 Complexity 2017 5436737 DOI: 10.1155/2017/5436737 [61] Xu Y, Ying H P, Jia Y, Ma J and Hayat T Sci. Rep. 7 43452 DOI: 10.1038/srep434522017 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|