Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128702    DOI: 10.1088/1674-1056/abb7f9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection

Zhiwei He(何志威)1, Chenggui Yao(姚成贵)2,†, Jianwei Shuai(帅建伟)3,‡, and Tadashi Nakano4
1 Department of Mathematics, Shaoxing University, Shaoxing 312000, China; 2 College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314000, China; 3 Department of Physics, State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China; 4 Graduate School of Frontier Biosciences, Osaka University, 5408570, Japan
Abstract  Many animals can detect the multi-frequency signals from their external surroundings. The understanding for underlying mechanism of signal detection can apply the theory of vibrational resonance, in which the moderate high frequency driving can maximize the nonlinear system's response to the low frequency subthreshold signal. In this work, we study the roles of chemical autapse on the vibrational resonance in a single neuron for signal detection. We reveal that the vibrational resonance is strengthened significantly by the inhibitory autapse in the neuron, while it is weakened typically by the excitatory autapse. It is generally believed that the inhibitory synapse has a suppressive effect in neuronal dynamics. However, we find that the detection of the neuron to the low frequency subthreshold signal can be improved greatly by the inhibitory autapse. Our finding indicates that the inhibitory synapse may act constructively on the detection of weak signal in the brain and neuronal system.
Keywords:  neuronal dynamics      autapse      vibrational resonance      synchronization      time delay  
Received:  16 July 2020      Revised:  09 August 2020      Accepted manuscript online:  14 September 2020
PACS:  87.19.lj (Neuronal network dynamics)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.lm (Synchronization in the nervous system)  
Fund: Project supported partially by the National Natural Science Foundation of China (Grant Nos. 11675112, 11705116, 11675134, and 11874310) and the National Natural Science Foundation of China for the 111 Project (Grant No. B16029).
Corresponding Authors:  Corresponding author. E-mail: yaochenggui2006@126.com Corresponding author. E-mail: jianweishuai@xmu.edu.cn   

Cite this article: 

Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection 2020 Chin. Phys. B 29 128702

[1] Victor J D and Conte M M Vis. Neurosci. 17 959 DOI: 10.1017/S09525238001761512000
[3] Gherm V, Zernov N, Lundborg B and Vastberg A J. Atmos. Sol. Terr. Phys. 59 1831 DOI: 10.1016/S1364-6826(97)00011-41997
[4] Heiligenberg W1991 Neural Nets in Electric Fish (Cambridge: MIT Press)
[5] Middleton J, Longtin A J B and Maler L Proc. Natl. Acad. Sci. USA 103 14596 DOI: 10.1073/pnas.06041031032006
[6] Stamper S A, Fortune E S and Chacron M J J. Exp. Biol. 216 2393 DOI: 10.1242/jeb.0823212013
[7] Wang G Y and Chen D J IEEE Trans. Ind. Electron. 46 440 DOI: 10.1109/41.7537831999
[8] Modestino J W and Ningo A Y Trans. Inform. Theory. 25 592 DOI: 10.1109/TIT.1979.10560861979
[9] Wiesenfeld K and Moss F Nature 373 33 DOI: 10.1038/373033a01995
[10] Gammaitoni L, Hanggi P, Jung P and Marchesoni F Rev. Mod. Phys. 70 223 DOI: 10.1103/RevModPhys.70.2231998
[11] Landa P S and McClintock P V E J. Phys. A: Math. Gen. 33 L433 DOI: 10.1088/0305-4470/33/45/1032000
[12] Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J and Sanjuán M A F Phys. Rev. E 67 066119 DOI: 10.1103/PhysRevE.67.0661192003
[13] Blekhman I I and Landa P S Int. J. Non-Linear Mech. 39 421 DOI: 10.1016/S0020-7462(02)00201-92004
[14] Ullner E, Zaikin A, Garcíía-Ojalvo J, Bascones R and Kurths J Phys. Lett. A 312 348 DOI: 10.1016/S0375-9601(03)00681-92003
[15] Casado-Pascual J and Baltanás J P Phys. Rev. E 69 046108 DOI: 10.1103/PhysRevE.69.0461082004
[16] Yao C G Liu Y and Zhan M Phys. Rev. E 83 061122 DOI: 10.1103/PhysRevE.83.0611222011
[17] Yao C G and Zhan M Phys. Rev. E 81 061129 DOI: 10.1103/PhysRevE.81.0611292010
[18] Chizhevsky V N, Smeu E and Giacomelli G Phys. Rev. Lett. 91 220602 DOI: 10.1103/PhysRevLett.91.2206022003
[19] Wu X X, Yao C G and Shuai J W Sci. Rep. 5 7684 DOI: 10.1038/srep076842015
[20] Yang L J, Liu W H, Yi M, Wang C J, Zhu Q M, Zhan X and Jia Y Phys. Rev. E 86 016209 DOI: 10.1103/PhysRevE.86.0162092012
[21] Kaplan D T, Clay J R, Manning T, Glass L, Guevara M R and Shrier A Phys. Rev. Lett. 76 4074 DOI: 10.1103/PhysRevLett.76.40741996
[22] He Z W and Yao C G Sci. China Tech. Sc. 63 2339 DOI: 10.1007/s11431-020-1659-y2020
[23] Yao C G, He Z W, Luo J M and Shuai J W Phys. Rev. E 91 052901 DOI: 10.1103/PhysRevE.91.0529012015
[24] Wang L, Zhang P M, Liang P J, Pei J and Qiu Y H Chin. Phys. Lett. 31 070501 DOI: 10.1088/0256-307X/31/7/0705012014
[25] Ozer M, Uzuntarla M, Kayikcioglu T and Graham L J. Phys. Lett. A 373 964 DOI: 10.1016/j.physleta.2009.01.0342008
[26] Liang L S, Zhang J Q and Liu L Z Chin. Phys. Lett. 31 050502 DOI: 10.1088/0256-307X/31/5/0505022014
[27] Yu Y G, Wang W, Wang J F and Liu F Phys. Rev. E 63 021907 DOI: 10.1103/PhysRevE.63.0219072001
[28] Zhang X, Huang H B, Li P J, Wu F P, Wu W J and Jiang M Chin. Phys. Lett. 29 120501 DOI: 10.1088/0256-307X/29/12/1205012012
[29] Cao B, Guan L N and Gu H G Acta Phys. Sin. 67 240502 (in Chinese) DOI: 10.7498/aps.67.201816752018
[30] Van Der Loos H and Glaser E M Brain Res. 48 355 DOI: 10.1016/0006-8993(72)90189-81972
[31] Bekkers J M Curr. Biol. 8 R52 DOI: 10.1016/S0960-9822(98)70033-81998
[32] Flight M H Nat. Rev. Neurosci. 10 316 DOI: 10.1038/nrn26372009
[33] Bekkers J M Curr. Biol. 13 R433 DOI: 10.1016/S0960-9822(03)00363-42003
[34] Bacci A and Huguenard J R Neuron 49 119 DOI: 10.1016/j.neuron.2005.12.0142006
[35] Bacci A, Huguenard J R and Prince D A J. Neurosci. 23 859 DOI: 10.1523/JNEUROSCI.23-03-00859.20032003
[36] Yi M and Yao C G Complexity 2020 1292417 DOI: 2020
[37] Qin H X, Ma J, Wang C N and Wu Y PLoS One 9 e100849 DOI: 10.1371/journal.pone.01008492014
[38] Wei C L and Zhao X Chin. Phys. B 28 013201 DOI: 10.1088/1674-1056/28/1/0132012019
[39] Usha K and Subha P A Chin. Phys. B 28 020502 DOI: 10.1088/1674-1056/28/2/0205022019
[40] Li D X, Bing J and Ye L Y 2019 Acta Phys. Sin. 68 180502 (in Chinese) DOI: 10.7498/aps.68.20190197
[41] Li Y, Schmid G and Haggi P Phys. Rev. E 82 061907 DOI: 10.1103/PhysRevE.82.0619072010
[42] Chen J X, Zhang H, Qiao Li Y, Liang H and Sun W G Commun. Nonlinear Sci. Numer. Simulat. 54 202 DOI: 10.1016/j.cnsns.2017.05.0342018
[43] Yu H T, Cai L H, Wu X Y, Wang J, Liu J and Zhang H Chin. Phys. B 28 048702 DOI: 10.1088/1674-1056/28/4/0487022019
[44] Yao C G, He Z W, Nakano T and Shuai J W Chaos 28 083112 DOI: 10.1063/1.50187072018
[45] Song X L, Wang H T and Chen Y Nonlinear Dyn. 96 2341 DOI: 10.1007/s11071-019-04925-72019
[46] Chen J X, Xiao J, Qian L Y and Xu J R Nonlinear Sci. Numer. Simul. 59 331 DOI: 10.1016/j.cnsns.2017.11.0142018
[47] Ma J and Tang J Sci. China Tech. Sc. 62 2038 DOI: 10.1007/s11431-019-9551-42019
[48] Lv M, Ma J, Yao Y G and Alzahrani F2015 Sci. China Tech. Sc. 58 448
[49] Yao C G He Z W and Nakano T Nonlinear Dyn. 97 1425 DOI: 10.1007/s11071-019-05060-z2019
[50] Qian N Proc. Natl. Acad. Sci. USA 87 8145 DOI: 10.1073/pnas.87.20.81451990
[51] Eccles J C Annu. Rev. Neurosci. 5 325 DOI: 10.1146/annurev.ne.05.030182.0015451982
[52] Hodgkin A L and Huxley A F J. Physiol. 117 500 DOI: 10.1113/jphysiol.1952.sp0047641952
[53] Burić N, Todorović K and Vasović N Phy. Rev. E 78 036211 DOI: 10.1103/PhysRevE.78.0362112008
[54] Belykh I, Lange E and Hasler M Phy. Rev. Lett. 94 188101 DOI: 10.1103/PhysRevLett.94.1881012005
[55] Schutter E D1988 Computational Modeling Methods for Neuroscientists (Cambridge: MIT Press)
[56] Wang S T, Wang W and Liu F Phys. Rev. Lett. 96 018103 DOI: 10.1103/PhysRevLett.96.0181032006
[57] Connelly W M and Lees G J. Physiol. 588 2047 DOI: 10.1113/tjp.2010.588.issue-122010
[58] Ozera M, Perc M, Uzuntarla M and Koklukayab E NeuroReport 21 338 DOI: 10.1097/WNR.0b013e328336ee622010
[59] Lübke J, Markram H, Frotscher M and Sakmann B J. Neurosci. 16 3209 DOI: 10.1523/JNEUROSCI.16-10-03209.19961996
[60] Wang C N, Guo S L, Xu Y, Ma J, Tang J Alzahrani F and Aatef H 2017 Complexity 2017 5436737 DOI: 10.1155/2017/5436737
[61] Xu Y, Ying H P, Jia Y, Ma J and Hayat T Sci. Rep. 7 43452 DOI: 10.1038/srep434522017
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[6] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[9] Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability
Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光). Chin. Phys. B, 2022, 31(7): 070506.
[10] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[11] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[12] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[13] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[14] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[15] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
No Suggested Reading articles found!