Special Issue:
SPECIAL TOPIC — Ultracold atom and its application in precision measurement
|
SPECIAL TOPIC—Ultracold atom and its application in precision measurement |
Prev
Next
|
|
|
Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Niq+ ( q=11, 12, 14 , and 15) ions |
Ting-Xian Zhang(张婷贤)1,2, Yong-Hui Zhang(张永慧)1, Cheng-Bin Li(李承斌)1,†, and Ting-Yun Shi(史庭云)1 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) method, we calculated the hyperfine interaction constants, the Landé g-factors, and the electric quadrupole moments for the low-lying states in the 61Ni11+, 61Ni12+, 61Ni14+, and 61Ni15+ ions. These states are clock states of the selected clock transitions in highly charged nickel ions (see Fig. \fref1 1). Based on discussing the effects of the electron correlations, the Breit interaction, and quantum electrodynamics (QED) effect on these physical quantities, reasonable uncertainties were obtained for our calculated results. In addition, the electric quadrupole frequency shifts and the Zeeman frequency shifts of the clock transitions concerned were analyzed.
|
Received: 09 September 2020
Revised: 20 October 2020
Accepted manuscript online: 05 November 2020
|
PACS:
|
31.15.ve
|
(Electron correlation calculations for atoms and ions: ground state)
|
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704398 and 11934014), the National Key Research and Development Program of China (Grant No. 2017YFA0304402), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030300). |
Corresponding Authors:
†Corresponding author. E-mail: cbli@wipm.ac.cn
|
Cite this article:
Ting-Xian Zhang(张婷贤), Yong-Hui Zhang(张永慧), Cheng-Bin Li(李承斌), and Ting-Yun Shi(史庭云) Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Niq+ ( q=11, 12, 14 , and 15) ions 2021 Chin. Phys. B 30 013101
|
1 Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 2 Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808 3 Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801 4 Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 5 Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L , Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896 6 Huntemann N, Sanner C, Lipphardt B, Tamm Chr and Peik E 2016 Phys. Rev. Lett. 116 063001 7 Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 8 Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801 9 Yudin V I, Taichenachev A V and Derevianko A 2014 Phys. Rev. Lett. 113 233003 10 Kozlov M G, Safronova M S, Crespo Lòpez-Urrutia J R and Schmidt P O 2018 Rev. Mod. Phys. 90 045005 11 Berengut J C, Dzuba V A and Flambaum V V 2010 Phys. Rev. Lett. 105 120801 12 Micke P, Leopold T, King S A, Benkler E, Spie\ss L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R and Schmidt P O 2020 Nature 578 60 13 Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O and Crespo López-Urrutia J R 2015 Science 347 1233 14 Asplund M, Grevesse N, Sauval A J and Scott P 2009 Annu. Rev. Astron. Astrophys. 47 481-522 15 Hinnov E, Denne B, Ramsey A, Stratton B and Timberlake J 1990 J. Opt. Soc. Am. B 7 2002 16 Behringer K H, Carolan P G, Denne B, Decker G, Engelhardt W, Forrest M J, Gill R, Gottardi N, Hawkes N C, Källne E, Krause H, Magyar G, Mansfield M, Mast F, Morgan P, Peacock N J, Stamp M F and Summers H P 1986 Nucl. Fusion 26 751 17 Jefferies J T, Orrall F Q and Zirker J B 1971 Sol. Phys. 16 103 18 Ekaman J, Jönsson P, Rad\vzi\bar ut\dot e L,Gaigalas G, Del Zanna G and Grant I P At. Data Nucl. Data Tables 120 152 19 Del Zanna G and Badnell N R 2016 Astron. Astrophys. 585 A118 20 Nazir R T, Bari M A, Bilal M, Sardar S, Nasim M H and Salahuddin M 2017 Chin. Phys. B 26 023102 21 Bilal M, Berrwerth R, Volotka A V and Fritzsche S 2017 Mon. Not. R. Astron. Soc. 469 4620 22 Yu Y M and Sahoo B K 2016 Phys. Rev. A 94 062502 23 Yu Y M and Sahoo B K 2018 Phys. Rev. A 97 041403(R) 24 Liang S Y, Lu Q F, Wang X C, Yang Y, Yao K, Shen Y, Wei B R, Xiao J, Chen S L, Zhou P P, Sun W, Zhang Y H, Huang Y, Guan H, Tong X, Li C B, Zou Y M, Shi T Y and Gao K L 2019 Rev. Sci. Instrum. 90 093301 25 Kramida, A, Ralchenko, Yu, Reader, J and NIST ASD Team NIST Atomic Spectra Database (version 5.7.1) 26 Grant I P2007 Relativistic quantum theory of atom and molecules(New York: Springer) 27 Liu J P, Li J G and Zou H X 2017 Chin. Phys. B 26 023104 28 He X K, Liu J P, Zhang X, Shen Y and Zou H X 2018 Chin. Phys. B 27 083102 29 Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004 30 Li J G, Jönsson P, Godefroid M, Dong C and Gaigalas G 2012 Phys. Rev. A 86 052523 31 Lindgren I 1984 Rep. Prog. Phys. 47 345 32 Jönsson P, Parpia F A and Fischer C F 1996 Comput. Phys. Commun. 96 301 33 Itano W M J. Res. Natl. Inst. Stand. Technol. 105 829 34 Cheng K T and Childs W J 1985 Phys. Rev. A 31 2775 35 Andersson M and Jönsson P 2008 Comput. Phys. Commun. 178 156 36 Biero\ifmmode \acuten\else \'n\fi J, Fischer C F , Indelicato P, Jönsson P and Pyykkö P 2009 Phys. Rev. A 79 052502 37 Li J G, Godefroid M and Wang J G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 115002 38 Fischer C F, Gaigalas G, Jönsson P and Biero\'n J. 2019 Comput. Phys. Commun. 237 184 39 Dubé P, Madej A A, Bernard J E, Marmet L, Boulanger J S and Cundy S 2005 Phys. Rev. Lett. 95 033001 40 Itano W M, Bergquist J C, Rosenband T, Wineland D J, Hume D, Chou C W, Jefferts S R, Heavner T P, Parker T E, Diddams S A and Fortier T M 2010 Laser Spectroscopy (Singapore: World Scientific) p. 117 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|