Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 013101    DOI: 10.1088/1674-1056/abc7a3
Special Issue: SPECIAL TOPIC — Ultracold atom and its application in precision measurement
SPECIAL TOPIC—Ultracold atom and its application in precision measurement Prev   Next  

Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Niq+ ( q=11, 12, 14 , and 15) ions

Ting-Xian Zhang(张婷贤)1,2, Yong-Hui Zhang(张永慧)1, Cheng-Bin Li(李承斌)1,†, and Ting-Yun Shi(史庭云)1
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) method, we calculated the hyperfine interaction constants, the Landé g-factors, and the electric quadrupole moments for the low-lying states in the 61Ni11+, 61Ni12+, 61Ni14+, and 61Ni15+ ions. These states are clock states of the selected clock transitions in highly charged nickel ions (see Fig. \fref1 1). Based on discussing the effects of the electron correlations, the Breit interaction, and quantum electrodynamics (QED) effect on these physical quantities, reasonable uncertainties were obtained for our calculated results. In addition, the electric quadrupole frequency shifts and the Zeeman frequency shifts of the clock transitions concerned were analyzed.
Keywords:  hyperfine interaction      Landé      g-factors      electric quadrupole moment      multiconfiguration Dirac-Hartree-Fock (MCDHF) method  
Received:  09 September 2020      Revised:  20 October 2020      Accepted manuscript online:  05 November 2020
PACS:  31.15.ve (Electron correlation calculations for atoms and ions: ground state)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704398 and 11934014), the National Key Research and Development Program of China (Grant No. 2017YFA0304402), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030300).
Corresponding Authors:  Corresponding author. E-mail: cbli@wipm.ac.cn   

Cite this article: 

Ting-Xian Zhang(张婷贤), Yong-Hui Zhang(张永慧), Cheng-Bin Li(李承斌), and Ting-Yun Shi(史庭云) Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Niq+ ( q=11, 12, 14 , and 15) ions 2021 Chin. Phys. B 30 013101

1 Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
2 Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
3 Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801
4 Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
5 Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L , Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
6 Huntemann N, Sanner C, Lipphardt B, Tamm Chr and Peik E 2016 Phys. Rev. Lett. 116 063001
7 Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
8 Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801
9 Yudin V I, Taichenachev A V and Derevianko A 2014 Phys. Rev. Lett. 113 233003
10 Kozlov M G, Safronova M S, Crespo Lòpez-Urrutia J R and Schmidt P O 2018 Rev. Mod. Phys. 90 045005
11 Berengut J C, Dzuba V A and Flambaum V V 2010 Phys. Rev. Lett. 105 120801
12 Micke P, Leopold T, King S A, Benkler E, Spie\ss L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R and Schmidt P O 2020 Nature 578 60
13 Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O and Crespo López-Urrutia J R 2015 Science 347 1233
14 Asplund M, Grevesse N, Sauval A J and Scott P 2009 Annu. Rev. Astron. Astrophys. 47 481-522
15 Hinnov E, Denne B, Ramsey A, Stratton B and Timberlake J 1990 J. Opt. Soc. Am. B 7 2002
16 Behringer K H, Carolan P G, Denne B, Decker G, Engelhardt W, Forrest M J, Gill R, Gottardi N, Hawkes N C, Källne E, Krause H, Magyar G, Mansfield M, Mast F, Morgan P, Peacock N J, Stamp M F and Summers H P 1986 Nucl. Fusion 26 751
17 Jefferies J T, Orrall F Q and Zirker J B 1971 Sol. Phys. 16 103
18 Ekaman J, Jönsson P, Rad\vzi\bar ut\dot e L,Gaigalas G, Del Zanna G and Grant I P At. Data Nucl. Data Tables 120 152
19 Del Zanna G and Badnell N R 2016 Astron. Astrophys. 585 A118
20 Nazir R T, Bari M A, Bilal M, Sardar S, Nasim M H and Salahuddin M 2017 Chin. Phys. B 26 023102
21 Bilal M, Berrwerth R, Volotka A V and Fritzsche S 2017 Mon. Not. R. Astron. Soc. 469 4620
22 Yu Y M and Sahoo B K 2016 Phys. Rev. A 94 062502
23 Yu Y M and Sahoo B K 2018 Phys. Rev. A 97 041403(R)
24 Liang S Y, Lu Q F, Wang X C, Yang Y, Yao K, Shen Y, Wei B R, Xiao J, Chen S L, Zhou P P, Sun W, Zhang Y H, Huang Y, Guan H, Tong X, Li C B, Zou Y M, Shi T Y and Gao K L 2019 Rev. Sci. Instrum. 90 093301
25 Kramida, A, Ralchenko, Yu, Reader, J and NIST ASD Team NIST Atomic Spectra Database (version 5.7.1)
26 Grant I P2007 Relativistic quantum theory of atom and molecules(New York: Springer)
27 Liu J P, Li J G and Zou H X 2017 Chin. Phys. B 26 023104
28 He X K, Liu J P, Zhang X, Shen Y and Zou H X 2018 Chin. Phys. B 27 083102
29 Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004
30 Li J G, Jönsson P, Godefroid M, Dong C and Gaigalas G 2012 Phys. Rev. A 86 052523
31 Lindgren I 1984 Rep. Prog. Phys. 47 345
32 Jönsson P, Parpia F A and Fischer C F 1996 Comput. Phys. Commun. 96 301
33 Itano W M J. Res. Natl. Inst. Stand. Technol. 105 829
34 Cheng K T and Childs W J 1985 Phys. Rev. A 31 2775
35 Andersson M and Jönsson P 2008 Comput. Phys. Commun. 178 156
36 Biero\ifmmode \acuten\else \'n\fi J, Fischer C F , Indelicato P, Jönsson P and Pyykkö P 2009 Phys. Rev. A 79 052502
37 Li J G, Godefroid M and Wang J G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 115002
38 Fischer C F, Gaigalas G, Jönsson P and Biero\'n J. 2019 Comput. Phys. Commun. 237 184
39 Dubé P, Madej A A, Bernard J E, Marmet L, Boulanger J S and Cundy S 2005 Phys. Rev. Lett. 95 033001
40 Itano W M, Bergquist J C, Rosenband T, Wineland D J, Hume D, Chou C W, Jefferts S R, Heavner T P, Parker T E, Diddams S A and Fortier T M 2010 Laser Spectroscopy (Singapore: World Scientific) p. 117
[1] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[2] Finite-field calculation of electric quadrupole moments of 2P3/2, 2D3/2,5/2, and 2F5/2,7/2 states for Yb+ ion
Xi-Tong Guo(郭希同), Yan-Mei Yu(于艳梅), Yong Liu(刘永), Bing-Bing Suo(索兵兵). Chin. Phys. B, 2020, 29(5): 053101.
[3] Weak- and hyperfine-interaction-induced 1s2s 1S0→1s2 1S0 E1 transition rates of He-like ions
Laima Radžiūtė, Erikas Gaidamauskas, Gediminas Gaigalas, Li Ji-Guang (李冀光), Dong Chen-Zhong (董晨钟), Per Jönsson. Chin. Phys. B, 2015, 24(4): 043103.
[4] Organic magnetoresistance based on hopping theory
Yang Fu-Jiang (杨福江), Xie Shi-Jie (解士杰). Chin. Phys. B, 2014, 23(9): 097306.
[5] Nuclear spin induced collapse and revival shape of Rabi oscillations of a single electron spin in diamond
Hu Xin(胡欣), Liu Dong-Qi(刘东奇), and Pan Xin-Yu(潘新宇) . Chin. Phys. B, 2011, 20(11): 117801.
[6] Optical pumping and population transfer of nuclear-spin states of caesium atoms in high magnetic fields
Luo Jun(罗军), Sun Xian-Ping(孙献平), Zeng Xi-Zhi(曾锡之), and Zhan Ming-Sheng(詹明生). Chin. Phys. B, 2007, 16(4): 998-1007.
No Suggested Reading articles found!