Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114205    DOI: 10.1088/1674-1056/abb663
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Actively tunable polarization-sensitive multiband absorber based on graphene

Ai-Li Cao(曹爱利), Kun Zhang(张昆), Jia-Rui Zhang(张佳瑞), Yan Liu(刘燕), and Wei-Jin Kong(孔伟金)
College of Physics Science, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
Abstract  

We design an actively tunable polarization-sensitive multiband absorber in the mid-infrared region, which consists of stacked graphene multilayers separated by dielectric layers on a metal mirror. Benefiting from the anisotropic structure, the absorber has dual absorption bands with almost perfect absorption at different wavelengths under the x and y polarizations. Analyzing the electric field amplitude distributions and the surface currents, we find that the absorption peaks under the same polarization are excited in the graphene layers independently. Therefore, more absorption bands can be achieved by increasing the graphene layers. Adjusting the Fermi energy of the graphene layers, the working wavelengths of the polarization-sensitive multiband absorbers can be tuned actively, and thus achieving a wide band regulation range. Besides, the peak number and the peak strength of the multiband absorber can be actively controlled by the polarization angle as well. We also propose a method to design an actively tunable polarization-sensitive multiband absorber, which may have potential applications in mid-infrared devices, such as polarization-sensitive filters and detectors.

Keywords:  multiband absorber      polarization-sensitive      graphene      band regulation  
Received:  03 July 2020      Revised:  12 August 2020      Accepted manuscript online:  09 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11804178 and 11274188) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BA027).
Corresponding Authors:  Corresponding author. E-mail: zkun@qdu.edu.cn Corresponding author. E-mail: kwjsd@163.com   

Cite this article: 

Ai-Li Cao(曹爱利), Kun Zhang(张昆), Jia-Rui Zhang(张佳瑞), Yan Liu(刘燕), and Wei-Jin Kong(孔伟金) Actively tunable polarization-sensitive multiband absorber based on graphene 2020 Chin. Phys. B 29 114205

Fig. 1.  

(a) Schematic diagram of graphene-based absorber. Top view of (b) top and (c) bottom graphene patches.

Fig. 2.  

Absorption spectra under (a) x- and (b) y-polarized incident light with black solid line, red dashed line, and blue dashed line denoting structures including dual-layer graphene patches, top graphene patch, and bottom graphene patch, respectively.

Fig. 3.  

Absorption spectra for different values of EF under (a) x polarization and (b) y polarization, respectively, relationship between the maximum absorption intensity and EF under (c) x polarization and (d) y polarization, and [(e) and (f)] absorption spectra for changing EF of each graphene layer individually under x and y polarizations.

Fig. 4.  

(a) Absorption spectra under different polarization angles, and (b) maximum absorptions of peaks related to different polarization angles.

Fig. 5.  

Electric field amplitude and surface current distribution under x polarization, relating to [(a) and (c)] P1 and [(b) and (d)] P2. Panels (a) and (b) show electric field around the top and bottom graphene patches in xy plane, while panels (c) and (d) display those in xz plane, respectively. Black dashed lines indicate the place of graphene structures.

Fig. 6.  

Electric field amplitude and surface current distributions under y polarization at [(a) and (c)] P3, [(b) and (d)] P4. Panels (a) and (b) show electric field around the top and bottom graphene patches in xy plane, while panels (c) and (d) display those in yz plane, respectively.

Fig. 7.  

(a) Absorption spectra for different values of d1, (b) related electric field distributions under x polarization, (c) absorption spectra for different values of d1, and (d) related electric field distributions under y polarization.

Fig. 8.  

Variations of absorption spectrum with (a) l1, (b) w1, (c) D1, (d) l2, (e) w2, and (f) D2, respectively.

[1]
Shelby R A, Smith D R, Schultz S 2001 Science 292 77 DOI: 10.1126/science.1058847
[2]
Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23 DOI: 10.1038/nnano.2015.304
[3]
Smith D R, Schultz S, Markos P, Soukoulis C M 2001 Phys. Rev. B 65 195104 DOI: 10.1103/PhysRevB.65.195104
[4]
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977 DOI: 10.1126/science.1133628
[5]
Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98 DOI: 10.1002/adma.201200674
[6]
Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403 DOI: 10.1103/PhysRevLett.104.207403
[7]
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402 DOI: 10.1103/PhysRevLett.100.207402
[8]
Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342 DOI: 10.1021/nl9041033
[9]
Katrodiya D, Jani C, Sorathiya V, Patel S K 2019 Opt. Mater. 89 34 DOI: 10.1016/j.optmat.2018.12.057
[10]
Wu C H, Neuner B, Shvets G, John J, Milder A, Zollars B, Savoy S 2011 Phys. Rev. B 84 075102 DOI: 10.1103/PhysRevB.84.075102
[11]
Chen H T 2012 Opt. Express 20 7165 DOI: 10.1364/OE.20.007165
[12]
Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L, Ma Y G 2014 Appl. Phys. Lett. 105 021102 DOI: 10.1063/1.4890521
[13]
Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192 DOI: 10.1038/nature11458
[14]
Geim A K, Novoselov K S 2007 Nat. Mater. 6 183 DOI: 10.1038/nmat1849
[15]
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 DOI: 10.1073/pnas.0502848102
[16]
Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 161407 DOI: 10.1103/PhysRevB.84.161407
[17]
Sun P, You C L, Mahigir A, Liu T T, Xia F, Kong W J, Veronis G, Dowling J P, Dong L F, Yun M J 2018 Nanoscale 10 15564 DOI: 10.1039/C8NR02525H
[18]
Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299 DOI: 10.1021/nl404042h
[19]
Huang M L, Cheng Y Z, Cheng Z Z, Chen H R, Mao X S, Gong R Z 2018 Opt. Commun. 415 194 DOI: 10.1016/j.optcom.2018.01.051
[20]
Ke S L, Wang B, Huang H, Long H, Wang K, Lu P X 2015 Opt. Express 23 8888 DOI: 10.1364/OE.23.008888
[21]
Bao Z Y, Wang J C, Hu Z D, Balmakou A, Khakhomov S, Tang Y, Zhang C L 2019 Opt. Express 27 31435 DOI: 10.1364/OE.27.031435
[22]
Hu J, Liu W, Xie W, Zhang W, Yao E, Zhang Y, Zhan Q 2019 Opt. Lett. 44 5642 DOI: 10.1364/OL.44.005642
[23]
Yao G, Ling F, Yue J, Luo C, Ji J, Yao J 2016 Opt. Express 24 1518 DOI: 10.1364/OE.24.001518
[24]
Hu J, Yao E, Xie W, Liu W, Zhan Q 2019 Opt. Express 27 18642 DOI: 10.1364/OE.27.018642
[25]
Fan C, Tian Y, Ren P, Jia W 2019 Chin. Phys. B 28 076105 DOI: 10.1088/1674-1056/28/7/076105
[26]
Wang J, Gao C N, Jiang Y N, Akwuruoha C N 2017 Chin. Phys. B 26 114102 DOI: 10.1088/1674-1056/26/11/114102
[27]
Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Express 25 23873 DOI: 10.1364/OE.25.023873
[28]
Xia Y Y, Dai Y, Wang B, Chen A, Zhang Y B, Zhang Y W, Guan F, Liu X H, Shi L, Zi J 2019 Opt. Express 27 1080 DOI: 10.1364/OE.27.001080
[29]
Cai Y J, Xu K D 2018 Opt. Express 26 31693 DOI: 10.1364/OE.26.031693
[30]
Zhang J F, Zhu Z H, Liu W, Yuan X D, Qin S Q 2015 Nanoscale 7 13530 DOI: 10.1039/C5NR03060A
[31]
Piper J R, Fan S H 2014 ACS Photon. 1 347 DOI: 10.1021/ph400090p
[32]
Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411 DOI: 10.1038/nphoton.2011.102
[33]
Hanson G W 2008 J. Appl. Phys. 103 064302 DOI: 10.1063/1.2891452
[34]
Li K, Xia F, Wang M, Sun P, Liu T, Hu W P, Kong W J, Yun M J, Dong L F 2017 Carbon 118 192 DOI: 10.1016/j.carbon.2017.03.047
[35]
Hanson G W 2008 J. Appl. Phys. 104 084314 DOI: 10.1063/1.3005881
[36]
Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370 DOI: 10.1021/nl201771h
[37]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666 DOI: 10.1126/science.1102896
[38]
Gómez-Díaz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490 DOI: 10.1364/OE.21.015490
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!