Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 106301    DOI: 10.1088/1674-1056/abad21
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport

Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞)
1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Abstract  

A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured through the rotation of scatters. In particular, the band inversion occurs between two pairs of high-order compound states, resulting in topological phase transition from trivial to nontrivial over a relatively broad high-frequency range. This is further evidenced by an effective Hamiltonian derived by the kp perturbation theory. The phononic topology is related to a pseudo-time-reversal symmetry constructed by the point group symmetry of two doubly degenerate eigenstates. Numerical simulations unambiguously demonstrate robust helical edge states whose pseudospin indices are locked to the propagation direction along the interface between topologically trivial and nontrivial phononic crystals. Our designed phononic systems provide potential applications in robust acoustic signal transport along any desired path over a high-frequency range.

Keywords:  topological phase transition      band inversion      compound mode      pseudospin  
Received:  02 July 2020      Revised:  30 July 2020      Accepted manuscript online:  07 August 2020
PACS:  63.20.-e (Phonons in crystal lattices)  
  43.35.Gk (Phonons in crystal lattices, quantum acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  46.40.-f (Vibrations and mechanical waves)  
Corresponding Authors:  Corresponding author. E-mail: liyanQFNU@163.com   
About author: 
†Corresponding author. E-mail: liyanQFNU@163.com
* Project supported by the Young Scientists Fund of the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AQ09) and Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704219).

Cite this article: 

Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞) Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport 2020 Chin. Phys. B 29 106301

Fig. 1.  

Schematic view of a triangular phononic crystal consisting of snowflake-like metamolecules. Red dashed hexagon indicates the primitive cell composed by one cylindrical iron rod and six three-legged iron rods embedded in an air host. a is the lattice constant. a1 and a2 are the unit vectors. R = 0.27a denotes the distance between the centers of cylindrical rods to the centers of three-legged rods. The radii of the center cylindrical rods are r = 0.1a. The width and length of the legs are h = 0.03a and d = 0.135a, respectively. The angle θ with respect to the horizontal axis characterizes the orientation of the three-legged iron rods.

Fig. 2.  

(a) Band structure for the triangular phononic crystal with rotational angle θ = 23°. The right inset shows the primitive cell diagram. The cylindrical rod and three-legged rods are labeled as A and B, respectively. (b) Pressure field distributions of four pairs of doubly degenerate eigenstates, corresponding to the points pA, dA, pAsB, and dAsB from low frequency to high frequency in (a). Dark red and dark blue denote the positive and negative maxima, respectively.

Fig. 3.  

(a)–(c) Band structures for the triangular phononic crystals with different rotational angles: (a) θ = 15°, (b) θ = 24.85°, and (c) θ = 35°. Green and violet dotted lines represent the bands including high-order compound modes pAsB and dAsB, respectively. (d), (e) Pressure field distributions of the modes pAsB and dAsB for phononic crystals shown in (a) and (c), respectively. The color patterns show the pressure distributions, where dark red and dark blue denote the positive and negative maxima, respectively. White arrows indicate the direction and amplitude of the time-averaged intensity. Black arrows show the spinning of sound intensity around the primitive cell center. The periodic boundary conditions are applied on the boundaries of the primitive cell.

Fig. 4.  

(a) Schematic view of a ribbon-shaped supercell composed of the topologically nontrivial crystal (θ = 35°) with its two edges cladded by topologically trivial crystal (θ = 15°). (b) Projected band structure for the ribbon-shaped supercell along the Γ K direction. The black and red dotted lines denote bulk and edge states, respectively. (c), (d) Pressure field distributions confined around the interface between two domains of distinct topology at points E and F indicated in (b), respectively. The corresponding intensity is displayed in the magnified views. The color patterns show the pressure distributions, where dark red and dark blue denote the positive and negative maxima, respectively. Red arrows show the direction and amplitude of the time-averaged intensity. Black arrows show the spinning of sound intensity around the primitive cell center. The periodic boundary conditions are applied on the x and y directions of the ribbon-shaped supercell.

Fig. 5.  

(a) Schematic view of a point-like chiral source consisting of eight antennas, which has a phase difference of π/4 between the neighboring antennas. (b), (c) Pressure field distributions excited by the point-like chiral sources with clockwise and anticlockwise phase delays, respectively, in the air. (d), (e) Robustly unidirectional propagation of edge states along the Z-shaped interface between the topologically nontrivial and trivial crystals. The excitations in (d) and (e) correspond to the sources shown in (b) and (c), respectively. The white circle indicates the position of the point-like chiral source with operating frequency f ≈ 1.4027c0/a, whose phase delay direction is represented by the black arrow. The whole structure is surrounded by the perfectly matched layers to absorb outgoing waves.

[1]
Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494 DOI: 10.1103/PhysRevLett.45.494
[2]
Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801 DOI: 10.1103/PhysRevLett.95.226801
[3]
Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757 DOI: 10.1126/science.1133734
[4]
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
[5]
Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.1057
[6]
Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904 DOI: 10.1103/PhysRevLett.100.013904
[7]
Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905 DOI: 10.1103/PhysRevLett.100.013905
[8]
Liu K X, Shen L F, He S L 2012 Opt. Lett. 37 4110 DOI: 10.1364/OL.37.004110
[9]
Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782 DOI: 10.1038/ncomms6782
[10]
Chen Y, Lin Z K, Chen H Y, Jiang J H 2020 Phys. Rev. B 101 041109 DOI: 10.1103/PhysRevB.101.041109
[11]
Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901 DOI: 10.1103/PhysRevLett.114.223901
[12]
Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401 DOI: 10.1103/PhysRevLett.120.217401
[13]
Khanikaev A B, Fleury R, Mousavi S H, Alù A 2015 Nat. Commun. 6 8260 DOI: 10.1038/ncomms9260
[14]
Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301 DOI: 10.1103/PhysRevLett.114.114301
[15]
Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302 DOI: 10.1103/PhysRevLett.122.014302
[16]
Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368 DOI: 10.1038/ncomms13368
[17]
He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904 DOI: 10.1063/1.4940403
[18]
Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752 DOI: 10.1038/srep32752
[19]
He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124 DOI: 10.1038/nphys3867
[20]
Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J, Liu J 2017 Phys. Rev. B 96 094106 DOI: 10.1103/PhysRevB.96.094106
[21]
Zhang Z W, Tian Y, Cheng Y, Liu X J, Christensen J 2017 Phys. Rev. B 96 241306 DOI: 10.1103/PhysRevB.96.241306
[22]
Deng Y C, Ge H, Tian Y, Lu M H, Jing Y 2017 Phys. Rev. B 96 184305 DOI: 10.1103/PhysRevB.96.184305
[23]
Xie B Y, Liu H, Cheng H, Liu Z Y, Chen S Q, Tian J G 2019 Phys. Rev. Appl. 11 044086 DOI: 10.1103/PhysRevApplied.11.044086
[24]
Xia B Z, Zheng S J, Liu T T, Jiao J R, Chen N, Dai H Q, Yu D J, Liu J 2018 Phys. Rev. B 97 155124 DOI: 10.1103/PhysRevB.97.155124
[25]
Lu J Y, Qiu C Y, Deng W Y, Huang X Q, Li F, Zhang F, Chen S Q, Liu Z Y 2018 Phys. Rev. Lett. 120 116802 DOI: 10.1103/PhysRevLett.120.116802
[26]
Zhang Z W, Tian Y, Wang Y H, Gao S X, Cheng Y, Liu X J, Christensen J 2018 Adv. Mater. 30 1803229 DOI: 10.1002/adma.201803229
[27]
Tian Z H, Shen C, Li J F, Reit E, Bachman H, Socolar J E S, Cummer S A, Huang T J 2020 Nat. Commun. 11 762 DOI: 10.1038/s41467-020-14553-0
[28]
Deng Y C, Lu M H, Jing Y 2019 J. Acoust. Soc. Am. 146 721 DOI: 10.1121/1.5115017
[29]
Nash L M, Kleckner D, Read A, Vitelli V, Turner A M, Irvine W T M 2015 Proc. Natl. Acad. Sci. USA 112 14495 DOI: 10.1073/pnas.1507413112
[30]
Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302 DOI: 10.1103/PhysRevLett.115.104302
[31]
Süsstrunk R, Huber S D 2015 Science 349 47 DOI: 10.1126/science.aab0239
[32]
Mousavi S H, Khanikaev A B, Wang Z 2015 Nat. Commun. 6 8682 DOI: 10.1038/ncomms9682
[33]
Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P, Chen Y F 2018 Nat. Commun. 9 3072 DOI: 10.1038/s41467-018-05461-5
[34]
LiuY Z, Lian C S, Li Y, Xu Y, Duan W H 2017 Phys. Rev. Lett. 119 255901 DOI: 10.1103/PhysRevLett.119.255901
[35]
Tong L, Fan H Y, Xia B Z 2020 J. Phys. D: Appl. Phys. 53 115303 DOI: 10.1088/1361-6463/ab6055
[36]
Huang H B, Tan Z H, Huo S Y, Feng L Y, Chen J J, Han X 2020 Commun. Phys. 3 46 DOI: 10.1038/s42005-020-0314-6
[37]
Li S F, Zhao D G, Niu H, Zhu X F, Zang J F 2018 Nat. Commun. 9 1370 DOI: 10.1038/s41467-018-03830-8
[38]
Kafesaki M, Economou E N 1999 Phys. Rev. B 60 11993 DOI: 10.1103/PhysRevB.60.11993
[39]
Chen Y, Xu L, Cai G X, Chen H Y 2018 Phys. Rev. B 98 125430 DOI: 10.1103/PhysRevB.98.125430
[40]
Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699 DOI: 10.1364/OE.21.007699
[41]
Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141 DOI: 10.1103/PhysRevB.86.035141
[1] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[2] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[3] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[4] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[5] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[6] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[7] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[8] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[9] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[10] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[11] The ground states and pseudospin textures of rotating two-component Bose-Einstein condensates trapped in harmonic plus quartic potential
Yan Liu(刘燕), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(9): 090304.
[12] Electronic properties and topological phases of ThXY (X=Pb, Au, Pt and Y= Sb, Bi, Sn) compounds
Zahra Nourbakhsh, Aminollah Vaez. Chin. Phys. B, 2016, 25(3): 037101.
[13] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
[14] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
[15] Current-induced pseudospin polarization in silicene
Wang Lei (王磊), Zhu Guo-Bao (朱国宝). Chin. Phys. B, 2014, 23(9): 098503.
No Suggested Reading articles found!