Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110308    DOI: 10.1088/1674-1056/abff29
RAPID COMMUNICATION Prev   Next  

Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator

Meng-Nan Chen(陈梦南)1,† and Wen-Chao Chen(陈文潮)2,‡
1 School of Science, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  Motivated by the fact that Weyl fermions can emerge in a three-dimensional topological insulator on breaking either time-reversal or inversion symmetries, we propose that a topological quantum phase transition to a Weyl semimetal phase occurs under the off-resonant circularly polarized light, in a three-dimensional topological insulator, when the intensity of the incident light exceeds a critical value. The circularly polarized light effectively generates a Zeeman exchange field and a renormalized Dirac mass, which are highly controllable. The phase transition can be exactly characterized by the first Chern number. A tunable anomalous Hall conductivity emerges, which is fully determined by the location of the Weyl nodes in momentum space, even in the doping regime. Our predictions are experimentally realizable through pump-probe angle-resolved photoemission spectroscopy and raise a new way for realizing Weyl semimetals and quantum anomalous Hall effects.
Keywords:  Floquet theory      Weyl semimetal      topological phase transition      Hall conductivity  
Received:  10 March 2021      Revised:  22 April 2021      Accepted manuscript online:  08 May 2021
PACS:  05.60.Gg (Quantum transport)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804070) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ19A040007).
Corresponding Authors:  Meng-Nan Chen, Wen-Chao Chen     E-mail:  mnchen@hdu.edu.cn;cwc@hdu.edu.cn

Cite this article: 

Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮) Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator 2021 Chin. Phys. B 30 110308

[1] Oka T and Aoki H 2009 Phys. Rev. B 79 081406
[2] Lindner N H, Refael G and Galitski V 2011 Nat. Phys. 7 490
[3] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005
[4] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453
[5] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
[6] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[7] Tahir M, Manchon A and Schwingenschlögl U 2014 Phys. Rev. B 90 125438
[8] Chen M N, Su W, Deng M X, Ruan J W, Luo W, Shao D X, Sheng L and Xing D Y 2016 Phys. Rev. B 94 205429
[9] Hübener H, Sentef M A, Giovannini U D, Kemper A F and Rubio A 2017 Nat. Commun. 8 13940
[10] Yan Z B and Wang Z 2016 Phys. Rev. Lett. 117 087402
[11] Yan Z B and Wang Z 2017 Phys. Rev. B 96 041206
[12] Chan C K, Oh Y T, Han J H and Lee P A 2016 Phys. Rev. B 94 121106
[13] Narayan A 2016 Phys. Rev. B 94 041409
[14] Taguchi K, Xu D H, Yamakage A and Law K T 2016 Phys. Rev. B 94 155206
[15] Ezawa M 2017 Phys. Rev. B 95 205201
[16] Yan Z B and Wang Z 2017 Phys. Rev. B 96 041206
[17] Yao S Y, Yan Z B and Wang Z 2017 Phys. Rev. B 96 195303
[18] Yan Z B, Bi R, Shen H T, Lu L, Zhang S C and Wang Z 2017 Phys. Rev. B 96 041103
[19] Bomantara R W, Raghava G N, Zhou L and Gong J 2016 Phys. Rev. E 93 022209
[20] Wang R, Wang B, Shen R, Sheng L and Xing D Y 2014 Europhys. Lett. 105 17004
[21] Zhang X X, Ong T T and Nagaosa N 2016 Phys. Rev. B 94 235137
[22] Zhou L, Chen C and Gong J 2016 Phys. Rev. B 94 075443
[23] Wang H Q, Chen M N, Bomantara R W, Gong J and Xing D Y 2017 Phys. Rev. B 95 075136
[24] Zhang D Q, Wang H Q, Ruan J W, Yao G and Zhang H J 2018 Phy. Rev. B 97 195139
[25] Bomantara R W and Gong J 2018 Phys. Rev. Lett 120 230405
[26] Chen M N, Mei F, Su W, Wang H Q, Zhu S L, Sheng L and Xing D Y 2017 J. Phys. Condens. Matter 29 035601
[27] Cheng Q Q, Pan Y M, Wang H Q, Zhang C S, Yu D, Gover A, Zhang H J, Li T, Zhou L and Zhu S N 2019 Phys. Rev. Lett. 122 173901
[28] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114
[29] Carpentier D, Delplace P, Fruchart M and Gawedzki K 2015 Phys. Rev. Lett. 114 106806
[30] Yao N Y, Potter A C, Potirniche I D and Vishwanath A 2017 Phys. Rev. Lett. 118 030401
[31] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[32] Parameswaran S A, Grover T, Abanin D A, Pesin D A and Vishwanath A 2014 Phys. Rev. X 4 031035
[33] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[34] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
[35] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[36] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805
[37] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[38] Inoue H, Gyenis A, Wang Z, Li J, Oh S W, Jiang S, Ni N, Bernevig B A and Yazdani A 2016 Science 351 1184
[39] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013
[40] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105
[41] Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N and Kaminski A 2016 Nat. Mat. 15 115
[42] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108
[43] Nandkishore R and Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15
[44] Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A, Yao N Y and Monroe C 2017 Nature 543 217
[45] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[46] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[47] Burkov A A 2014 Phys. Rev. Lett. 113 187202
[48] Rammer J 2004 Quantum Transport Theory (Westview Press, Boulder, CO)
[49] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[50] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A and Gedik N 2016 Nat. Phys. 12 306
[51] Giovannini U D, Hübener H and Rubio A 2016 Nano Lett. 16 7993
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[4] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[5] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[6] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[7] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[8] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[9] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[10] Integer quantum Hall effect in Kekulé-patterned graphene
Yawar Mohammadi and Samira Bahrami. Chin. Phys. B, 2022, 31(1): 017305.
[11] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[12] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[13] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[14] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[15] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
No Suggested Reading articles found!