|
|
Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator |
Meng-Nan Chen(陈梦南)1,† and Wen-Chao Chen(陈文潮)2,‡ |
1 School of Science, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract Motivated by the fact that Weyl fermions can emerge in a three-dimensional topological insulator on breaking either time-reversal or inversion symmetries, we propose that a topological quantum phase transition to a Weyl semimetal phase occurs under the off-resonant circularly polarized light, in a three-dimensional topological insulator, when the intensity of the incident light exceeds a critical value. The circularly polarized light effectively generates a Zeeman exchange field and a renormalized Dirac mass, which are highly controllable. The phase transition can be exactly characterized by the first Chern number. A tunable anomalous Hall conductivity emerges, which is fully determined by the location of the Weyl nodes in momentum space, even in the doping regime. Our predictions are experimentally realizable through pump-probe angle-resolved photoemission spectroscopy and raise a new way for realizing Weyl semimetals and quantum anomalous Hall effects.
|
Received: 10 March 2021
Revised: 22 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
05.60.Gg
|
(Quantum transport)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804070) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ19A040007). |
Corresponding Authors:
Meng-Nan Chen, Wen-Chao Chen
E-mail: mnchen@hdu.edu.cn;cwc@hdu.edu.cn
|
Cite this article:
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮) Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator 2021 Chin. Phys. B 30 110308
|
[1] Oka T and Aoki H 2009 Phys. Rev. B 79 081406 [2] Lindner N H, Refael G and Galitski V 2011 Nat. Phys. 7 490 [3] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005 [4] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453 [5] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237 [6] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196 [7] Tahir M, Manchon A and Schwingenschlögl U 2014 Phys. Rev. B 90 125438 [8] Chen M N, Su W, Deng M X, Ruan J W, Luo W, Shao D X, Sheng L and Xing D Y 2016 Phys. Rev. B 94 205429 [9] Hübener H, Sentef M A, Giovannini U D, Kemper A F and Rubio A 2017 Nat. Commun. 8 13940 [10] Yan Z B and Wang Z 2016 Phys. Rev. Lett. 117 087402 [11] Yan Z B and Wang Z 2017 Phys. Rev. B 96 041206 [12] Chan C K, Oh Y T, Han J H and Lee P A 2016 Phys. Rev. B 94 121106 [13] Narayan A 2016 Phys. Rev. B 94 041409 [14] Taguchi K, Xu D H, Yamakage A and Law K T 2016 Phys. Rev. B 94 155206 [15] Ezawa M 2017 Phys. Rev. B 95 205201 [16] Yan Z B and Wang Z 2017 Phys. Rev. B 96 041206 [17] Yao S Y, Yan Z B and Wang Z 2017 Phys. Rev. B 96 195303 [18] Yan Z B, Bi R, Shen H T, Lu L, Zhang S C and Wang Z 2017 Phys. Rev. B 96 041103 [19] Bomantara R W, Raghava G N, Zhou L and Gong J 2016 Phys. Rev. E 93 022209 [20] Wang R, Wang B, Shen R, Sheng L and Xing D Y 2014 Europhys. Lett. 105 17004 [21] Zhang X X, Ong T T and Nagaosa N 2016 Phys. Rev. B 94 235137 [22] Zhou L, Chen C and Gong J 2016 Phys. Rev. B 94 075443 [23] Wang H Q, Chen M N, Bomantara R W, Gong J and Xing D Y 2017 Phys. Rev. B 95 075136 [24] Zhang D Q, Wang H Q, Ruan J W, Yao G and Zhang H J 2018 Phy. Rev. B 97 195139 [25] Bomantara R W and Gong J 2018 Phys. Rev. Lett 120 230405 [26] Chen M N, Mei F, Su W, Wang H Q, Zhu S L, Sheng L and Xing D Y 2017 J. Phys. Condens. Matter 29 035601 [27] Cheng Q Q, Pan Y M, Wang H Q, Zhang C S, Yu D, Gover A, Zhang H J, Li T, Zhou L and Zhu S N 2019 Phys. Rev. Lett. 122 173901 [28] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114 [29] Carpentier D, Delplace P, Fruchart M and Gawedzki K 2015 Phys. Rev. Lett. 114 106806 [30] Yao N Y, Potter A C, Potirniche I D and Vishwanath A 2017 Phys. Rev. Lett. 118 030401 [31] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [32] Parameswaran S A, Grover T, Abanin D A, Pesin D A and Vishwanath A 2014 Phys. Rev. X 4 031035 [33] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 [34] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161 [35] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [36] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805 [37] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 [38] Inoue H, Gyenis A, Wang Z, Li J, Oh S W, Jiang S, Ni N, Bernevig B A and Yazdani A 2016 Science 351 1184 [39] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 [40] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105 [41] Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N and Kaminski A 2016 Nat. Mat. 15 115 [42] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108 [43] Nandkishore R and Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15 [44] Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A, Yao N Y and Monroe C 2017 Nature 543 217 [45] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [46] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 [47] Burkov A A 2014 Phys. Rev. Lett. 113 187202 [48] Rammer J 2004 Quantum Transport Theory (Westview Press, Boulder, CO) [49] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424 [50] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A and Gedik N 2016 Nat. Phys. 12 306 [51] Giovannini U D, Hübener H and Rubio A 2016 Nano Lett. 16 7993 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|