Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097405    DOI: 10.1088/1674-1056/ab9f26
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry

Ya-Lei Huang(黄亚磊)1,2, Run Yang(杨润)3, Pei-Gang Li(李培刚)1,4, Hong Xiao(肖宏)2
1 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China;
3 Laboratorium für Festkörperphysik, ETH-Zürich, 8093, Zürich, Switzerland;
4 Department of Physics, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Torque measurements were performed on single crystal samples of Ca0.73La0.27(Fe0.96Co0.04)As2 in both the normal and superconducting states. Contributions to the torque signal from the paramagnetism and the vortex lattice were identified. The superconducting anisotropy parameter γ was determined from the reversible part of the vortex contribution based on Kogan's model. It is found that γ ≈ 7.5 at t=T/Tc=0.85, which is smaller than the result of CaFe0.88Co0.12AsF γ ≈ 15 at t=0.83, but larger than the result of 11 and 122 families, where γ stays in the range of 2-3. The moderate anisotropy of this 112 iron-based superconductor fills the gap between 11, 122 families and 1111 families. In addition, we found that the γ shows a temperature dependent behavior, i.e., decreasing with increasing temperature. The fact that γ is not a constant point towards a multiband scenario in this compound.
Keywords:  torque      anisotropy parameter      superconductivity  
Received:  06 June 2020      Revised:  12 June 2020      Accepted manuscript online:  23 June 2020
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: Project supported by NSAF, China (Grant No. U1530402). P. G. Li acknowledges the support of the National Natural Science Foundation of China (Grant No. 51572241).
Corresponding Authors:  Pei-Gang Li, Hong Xiao     E-mail:  pgli@bupt.edu.cn;hong.xiao@hpstar.ac.cn

Cite this article: 

Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏) Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry 2020 Chin. Phys. B 29 097405

[1] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
[2] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[3] Fujioka M, Denholme S J, Tanaka M, Hiroyuki Takeya, Takahide Y and Yoshihiko T 2014 Appl. Phys. Lett. 105 102602
[4] Wang R, Li D P 2016 Chin. Phys. B 25 097401
[5] Tapp J H, Tang Z, Lv B, Kalyan S, Bernd L, Chu C W and Guloy M 2008 Phys. Rev. B 78 060505
[6] Zhu J, Wang Z S, Wang Z Y, Hou X Y, Luo H Q, Lu X Y, Li C H, Shan L, Wen H H, Ren C 2015 Chin. Phys. Lett. 32 77401
[7] Kawasaki S, Mabuchi T, Maeda S, Tomoki Adachi, Mizukami T, Kudo K, Nohara M and Zheng G Q 2015 Phys. Rev. B 92 180508
[8] Xie T, Gong D L, Zhang W L, Gu Y H, Hüsges Z, Chen D F, Liu Y T, Hao L J, Meng S Q, Lu Z L, Li S L and Luo H Q 2017 Supercond. Sci. Technol. 30 095002
[9] Zhou W, Ke F, Xu X, Sankar, Xing X, Xu C Q, Jiang X F, Qian B, Zhou N, Zhang Y, Xu M, Li B, Chen Band Shi Z X 2017 Phys. Rev. B 96 184503
[10] Xing X Z, Li Z F, Veshchunov I, Yi X L, Meng Y, Li M, Lin B C, Tamegai T and Shi Z X 2019 New J. Phys. 21 093015
[11] Zhou W, Zhuang J, Yuan F, Li X, Xing X Z, Sun Y and Shi Z X 2014 Appl. Phys. Express 7 063102
[12] Xing X, Zhou W, Zhou N, Yuan F F, Pan Y Q, Zhao H J, Xu X F and Shi Z X 2016 Supercond. Sci. Tech. 29 055005
[13] Takahashi K, Atsumi T, Yamamoto N, Xu M X, Hideaki K and Takekazu I 2002 Phys. Rev. B 66 012501
[14] Kortyka A, Puzniak R Wisniewski A, Zehetmayer M, Weber H W, Cai Y Q and Yao X 2010 Supercond. Sci. Tech. 23 065001
[15] Kogan V G 1988 Phys. Rev. B 38 7049
[16] Xiao H, Gao B, Ma Y H, Li X J, Mu G and Hu T 2016 J. Phys.: Condens. Matter 28 325701
[17] Yu A B, Wang T Wu Y F, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505
[18] Xiao H, Hu T, Zhou H J, Li X J, Ni S L, Zhou F and Dong X L 2020 Phys. Rev. B 101 184520
[19] Xiao H, Hu T, Almasan C C, Sayles T A and Maple M B 2006 Phys. Rev. B 73 184511
[20] Li G, Grissonnanche G, Gurevich A, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J and Balicas L 2011 Phys. Rev. B 83 214505
[21] Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H and Matsuda Y 2012 Nature 486 382
[22] Bergemann C, Tyler A W, Mackenzie A P, Cooper J R, Julian S R and Farrell D E 1998 Phys. Rev. B 57 14387
[23] Angst M, Puzniak R, Wisniewski A, Jun J, Kazakov S M, Karpinski J, Roos J and Keller H 2002 Phys. Rev. Lett. 88 167004
[24] Khasanov R and Guguchia Z 2015 Supercond. Sci. Tech. 28 034003
[25] Weyeneth S, Puzniak R, Mosele U, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J, Kohout S, Roos J and Keller H 2009 J. Supercond. Nov. Magn. 22 325
[26] Jiang, S, Liu, L, Schütt, M, Hallas, Hallas M, Shen B, Tian W, Emmanouilidou E, Shi A S, Luke M, Yasutomo J U, Fernandes R M and Ni N 2016 Phys. Rev. B 93 174513
[27] Bendele M, Weyeneth S, Puzniak R, Maisuradze A, Pomjakushina E, Conder K, Pomjakushin V, Luetkens H, Katrych S, Wisniewski A, Khasanov R and Keller H 2010 Phys. Rev. B 81 224520
[28] Zhou W, Xing X Z, Wu W J, Zhao H J and Shi Z X 2016 Sci. Rep. 6 22278
[29] Prozorov R, Ni N, Tanatar M A, Kogan V G, Gordon R T, Martin C, Blomberg E C, Prommapan P, Yan J Q, Budko S L and Canfield P C 2008 Phys. Rev. B 78 224506
[30] Xing X, Zhou W, Wang J, Feng J J, Xu C Q, Zhou N, Meng Y, Zhang Y F, Pan Y Q, Qin L Y, Zhou W, Zhao H J and X1 Z 2017 Sci. Rep. 7 45943
[31] Xiao H, Hu T, Almasan C C, Sayles T A and Maple M B 2008 Phys. Rev. B 78 014510
[32] Xing X Z, Li Z F, Yi X L, et al. 2018 Sci. Chin. Phys. Mech. Astron. 61 127406
[33] Fletcher J D, Carrington A, Taylor O J, Kazakov S M and Karpinski J 2005 Phys. Rev. Lett. 95 097005
[34] Martin C, Tillman M E, Kim H, Roos J, Keller H, Miranovic P, Jun J, Kazakov S M and Karpinski J 2009 Phys. Rev. Lett. 102 247002
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[12] From microelectronics to spintronics and magnonics
Xiu-Feng Han(韩秀峰), Cai-Hua Wan(万蔡华), Hao Wu(吴昊), Chen-Yang Guo(郭晨阳), Ping Tang(唐萍), Zheng-Ren Yan(严政人), Yao-Wen Xing(邢耀文), Wen-Qing He(何文卿), and Guo-Qiang Yu(于国强). Chin. Phys. B, 2022, 31(11): 117504.
[13] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[14] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[15] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
No Suggested Reading articles found!