Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊)1,2, Run Yang(杨润)3, Pei-Gang Li(李培刚)1,4, Hong Xiao(肖宏)2
1 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; 3 Laboratorium für Festkörperphysik, ETH-Zürich, 8093, Zürich, Switzerland; 4 Department of Physics, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract Torque measurements were performed on single crystal samples of Ca0.73La0.27(Fe0.96Co0.04)As2 in both the normal and superconducting states. Contributions to the torque signal from the paramagnetism and the vortex lattice were identified. The superconducting anisotropy parameter γ was determined from the reversible part of the vortex contribution based on Kogan's model. It is found that γ ≈ 7.5 at t=T/Tc=0.85, which is smaller than the result of CaFe0.88Co0.12AsF γ ≈ 15 at t=0.83, but larger than the result of 11 and 122 families, where γ stays in the range of 2-3. The moderate anisotropy of this 112 iron-based superconductor fills the gap between 11, 122 families and 1111 families. In addition, we found that the γ shows a temperature dependent behavior, i.e., decreasing with increasing temperature. The fact that γ is not a constant point towards a multiband scenario in this compound.
Fund: Project supported by NSAF, China (Grant No. U1530402). P. G. Li acknowledges the support of the National Natural Science Foundation of China (Grant No. 51572241).
Corresponding Authors:
Pei-Gang Li, Hong Xiao
E-mail: pgli@bupt.edu.cn;hong.xiao@hpstar.ac.cn
Cite this article:
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏) Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry 2020 Chin. Phys. B 29 097405
[1]
Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
[2]
Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[3]
Fujioka M, Denholme S J, Tanaka M, Hiroyuki Takeya, Takahide Y and Yoshihiko T 2014 Appl. Phys. Lett. 105 102602
[4]
Wang R, Li D P 2016 Chin. Phys. B 25 097401
[5]
Tapp J H, Tang Z, Lv B, Kalyan S, Bernd L, Chu C W and Guloy M 2008 Phys. Rev. B 78 060505
[6]
Zhu J, Wang Z S, Wang Z Y, Hou X Y, Luo H Q, Lu X Y, Li C H, Shan L, Wen H H, Ren C 2015 Chin. Phys. Lett. 32 77401
[7]
Kawasaki S, Mabuchi T, Maeda S, Tomoki Adachi, Mizukami T, Kudo K, Nohara M and Zheng G Q 2015 Phys. Rev. B 92 180508
[8]
Xie T, Gong D L, Zhang W L, Gu Y H, Hüsges Z, Chen D F, Liu Y T, Hao L J, Meng S Q, Lu Z L, Li S L and Luo H Q 2017 Supercond. Sci. Technol. 30 095002
[9]
Zhou W, Ke F, Xu X, Sankar, Xing X, Xu C Q, Jiang X F, Qian B, Zhou N, Zhang Y, Xu M, Li B, Chen Band Shi Z X 2017 Phys. Rev. B 96 184503
[10]
Xing X Z, Li Z F, Veshchunov I, Yi X L, Meng Y, Li M, Lin B C, Tamegai T and Shi Z X 2019 New J. Phys. 21 093015
[11]
Zhou W, Zhuang J, Yuan F, Li X, Xing X Z, Sun Y and Shi Z X 2014 Appl. Phys. Express 7 063102
[12]
Xing X, Zhou W, Zhou N, Yuan F F, Pan Y Q, Zhao H J, Xu X F and Shi Z X 2016 Supercond. Sci. Tech. 29 055005
[13]
Takahashi K, Atsumi T, Yamamoto N, Xu M X, Hideaki K and Takekazu I 2002 Phys. Rev. B 66 012501
[14]
Kortyka A, Puzniak R Wisniewski A, Zehetmayer M, Weber H W, Cai Y Q and Yao X 2010 Supercond. Sci. Tech. 23 065001
[15]
Kogan V G 1988 Phys. Rev. B 38 7049
[16]
Xiao H, Gao B, Ma Y H, Li X J, Mu G and Hu T 2016 J. Phys.: Condens. Matter 28 325701
[17]
Yu A B, Wang T Wu Y F, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505
[18]
Xiao H, Hu T, Zhou H J, Li X J, Ni S L, Zhou F and Dong X L 2020 Phys. Rev. B 101 184520
[19]
Xiao H, Hu T, Almasan C C, Sayles T A and Maple M B 2006 Phys. Rev. B 73 184511
[20]
Li G, Grissonnanche G, Gurevich A, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J and Balicas L 2011 Phys. Rev. B 83 214505
[21]
Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H and Matsuda Y 2012 Nature 486 382
[22]
Bergemann C, Tyler A W, Mackenzie A P, Cooper J R, Julian S R and Farrell D E 1998 Phys. Rev. B 57 14387
[23]
Angst M, Puzniak R, Wisniewski A, Jun J, Kazakov S M, Karpinski J, Roos J and Keller H 2002 Phys. Rev. Lett. 88 167004
[24]
Khasanov R and Guguchia Z 2015 Supercond. Sci. Tech. 28 034003
[25]
Weyeneth S, Puzniak R, Mosele U, Zhigadlo N D, Katrych S, Bukowski Z, Karpinski J, Kohout S, Roos J and Keller H 2009 J. Supercond. Nov. Magn. 22 325
[26]
Jiang, S, Liu, L, Schütt, M, Hallas, Hallas M, Shen B, Tian W, Emmanouilidou E, Shi A S, Luke M, Yasutomo J U, Fernandes R M and Ni N 2016 Phys. Rev. B 93 174513
[27]
Bendele M, Weyeneth S, Puzniak R, Maisuradze A, Pomjakushina E, Conder K, Pomjakushin V, Luetkens H, Katrych S, Wisniewski A, Khasanov R and Keller H 2010 Phys. Rev. B 81 224520
[28]
Zhou W, Xing X Z, Wu W J, Zhao H J and Shi Z X 2016 Sci. Rep. 6 22278
[29]
Prozorov R, Ni N, Tanatar M A, Kogan V G, Gordon R T, Martin C, Blomberg E C, Prommapan P, Yan J Q, Budko S L and Canfield P C 2008 Phys. Rev. B 78 224506
[30]
Xing X, Zhou W, Wang J, Feng J J, Xu C Q, Zhou N, Meng Y, Zhang Y F, Pan Y Q, Qin L Y, Zhou W, Zhao H J and X1 Z 2017 Sci. Rep. 7 45943
[31]
Xiao H, Hu T, Almasan C C, Sayles T A and Maple M B 2008 Phys. Rev. B 78 014510
[32]
Xing X Z, Li Z F, Yi X L, et al. 2018 Sci. Chin. Phys. Mech. Astron. 61 127406
[33]
Fletcher J D, Carrington A, Taylor O J, Kazakov S M and Karpinski J 2005 Phys. Rev. Lett. 95 097005
[34]
Martin C, Tillman M E, Kim H, Roos J, Keller H, Miranovic P, Jun J, Kazakov S M and Karpinski J 2009 Phys. Rev. Lett. 102 247002
Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2 Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.