Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090201    DOI: 10.1088/1674-1056/27/9/090201
GENERAL   Next  

Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation

Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟)
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
Abstract  

We study dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the three-dimensional parameter space. Then we show the required conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like (antikink-like) wave solutions, and compactons. Moreover, we present exact expressions and simulations of these traveling wave solutions. The dynamical behaviors of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of nonlinear waves.

Keywords:  dynamical behaviors      traveling wave solutions      Fujimoto-Watanabe equation      bifurcations  
Received:  26 May 2018      Revised:  24 June 2018      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
  02.30.Oz (Bifurcation theory)  
  05.45.Yv (Solitons)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11701191) and Subsidized Project for Cultivating Postgraduates' Innovative Ability in Scientific Research of Huaqiao University, China.

Corresponding Authors:  Zhen-Shu Wen     E-mail:  wenzhenshu@hqu.edu.cn

Cite this article: 

Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟) Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation 2018 Chin. Phys. B 27 090201

[1] Fujimoto A and Watanabe Y 1989 Phys. Lett. A 136 294
[2] Sakovich S 1991 J. Phys. A:Math. Gen. 24 L519
[3] Sakovich S 2011 J. Math. Phys. 52 023509
[4] Shi L J and Wen Z S 2018 Commun. Theor. Phys. 69 631
[5] Liu S K, Zhao Q and Liu S D 2011 Chin. Phys. B 20 040202
[6] Zhou X C, Shi L F, Han X L and Mo J Q 2014 Chin. Phys. B 23 090204
[7] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[8] Jin Y, Jia M and Lou S Y 2013 Chin. Phys. Lett. 30 020203
[9] Wazwaz A M 2018 Math. Meth. Appl. Sci. 41 80
[10] Liu Z R and Long Y 2007 Nonlinear Anal. Real. 8 136
[11] Wen Z S, Liu Z R and Song M 2009 Appl. Math. Comput. 215 2349
[12] Wen Z S and Liu Z R 2011 Nonlinear Anal. Real. 12 1698
[13] Wang Y and Bi Q S 2012 Nonlinear Dyn. 69 1705
[14] Zhang L J, Chen L Q and Huo X W 2013 Nonlinear Dyn. 72 789
[15] Wen Z S 2014 Nonlinear Dyn. 77 247
[16] Chen Y R, Song M and Liu Z R 2015 Nonlinear Dyn. 82 333
[17] Wen Z S 2015 Math. Meth. Appl. Sci. 38 2363
[18] Song M 2015 Nonlinear Dyn. 80 431
[19] Chen A Y, Wen S Q, Tang S Q, Huang W T and Qiao Z J 2015 Stud. Appl. Math. 134 24
[20] Li S Y and Liu Z R 2015 Nonlinear Dyn. 79 903
[21] Wen Z S 2017 Nonlinear Dyn. 87 1917
[22] Pan C H and Li S Y 2016 Nonlinear Dyn. 86 779
[23] Wen Z S 2017 Int. J. Bifurcat. Chaos 27 1750114
[24] Li J B, Zhu W J and Chen G R 2016 Int. J. Bifurcat. Chaos 26 1650207
[25] Wen Z S 2014 Nonlinear Dyn. 77 849
[26] Wen Z S 2015 Nonlinear Dyn. 82 767
[27] Wen Z S and Shi L J 2018 Dyn. Syst. Appl. 27 581
[1] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[2] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[3] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[4] Controlling the transition between Turing and antispiral patterns by using time-delayed-feedback
He Ya-Feng(贺亚峰), Liu Fu-Cheng(刘富成), Fan Wei-Li(范伟丽), and Dong Li-Fang(董丽芳) . Chin. Phys. B, 2012, 21(3): 034701.
[5] A connection between the (G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation
Zhao Yin-Long (赵银龙), Liu Yin-Ping (柳银萍), and Li Zhi-Bin (李志斌). Chin. Phys. B, 2010, 19(3): 030306.
[6] A novel four-dimensional autonomous hyperchaotic system
Liu Chong-Xin(刘崇新) and Liu Ling(刘凌). Chin. Phys. B, 2009, 18(6): 2188-2193.
No Suggested Reading articles found!