Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037303    DOI: 10.1088/1674-1056/20/3/037303
RAPID COMMUNICATION Prev   Next  

Simultaneous low extinction and high local field enhancement in Ag nanocubes

Zhou Fei(周飞)a), Liu Ye(刘晔)a)b), and Li Zhi-Yuan(李志远)a)†
a Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Anhui Provincial Key Lab of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.
Keywords:  surface plasmon resonance      low extinction      local field enhancement  
Received:  13 October 2010      Revised:  12 November 2010      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736041 and 10874238), and the National Key Basic Research Special Foundation of China (Grant No. 2007CB613205).

Cite this article: 

Zhou Fei(周飞), Liu Ye(刘晔), and Li Zhi-Yuan(李志远) Simultaneous low extinction and high local field enhancement in Ag nanocubes 2011 Chin. Phys. B 20 037303

[1] Chen J Y, Wang D L, Xi J F, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y N and Li X D 2007 Nano Letters 7 1318
[2] Khlebtsov B, Zharov V, Melnikov A, Tuchin V and Khlebtsov N 2006 Nanotechnology 17 5167
[3] Nam J, Won N, Jin H, Chung H and Kim S 2009 J. Am. Chem. Soc. 131 13639
[4] Patra C R, Bhattacharya R, Mukhopadhyay D and Mukherjee P 2010 Adv. Drug Deliver. Rev. 62 346
[5] Li X, Qian J, Jiang L and He S L 2009 Appl. Phys. Lett. 94 063111
[6] Haes A J, Zou S L, Schatz G C and van Duyne R P 2004 J. Phys. Chem. B 108 109
[7] McLellan J M, Li Z Y, Siekkinen A R and Xia Y N 2007 Nano Letters 7 1013
[8] Doering W E and Nie S M 2002 J. Phys. Chem. B 106 311
[9] Li Z Y and Xia Y N 2010 Nano Letters 10 243
[10] McMahon J M, Henry A I, Wustholz K L, Natan M J, Freeman R G, van Duyne R P and Schatz G C 2009 Anal. Bioanal. Chem. 394 1819
[11] Xing Z W, Wang J R, Ke H T, Zhao B, Yue X L, Dai Z F and Liu J B 2010 Nanotechnology 21 145607
[12] Pustovit V N and Shahbazyan T V 2009 Phys. Rev. Lett. 102 077401
[13] Bharadwaj P and Novotny L 2007 Opt. Express 15 14266
[14] Nishi H, Asahi T and Kobatake S 2009 J. Phys. Chem. C 113 17359
[15] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[16] Schwartzberg A M, Grant C D, Wolcott A, Talley C E, Huser T R, Bogomolni R and Zhang J Z 2004 J. Phys. Chem. B 108 19191
[17] Halas L, Orinak A, Sharif A, Adamova M and Ladomersky J 2005 Cent. Eur. J. Chem. 3 570
[18] Siu W H and Yu K W 1996 Phys. Rev. B 53 9277
[19] Yuen K P, Law M F, Yu K W and Sheng P 1997 Phys. Rev. E 56 R1322
[20] Wang W T, Chen Z H, Yang G, Guan D Y, Yang G Z, Zhou Y L and Lu H B 2003 Appl. Phys. Lett. 83 1983
[21] Yu D B and Yam V W W 2004 J. Am. Chem. Soc. 126 13200
[22] Sun Y G and Xia Y N 2002 Science 298 2176
[23] Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J and Xia Y N 2005 Nano Letters 5 2034
[24] Mahmoud M A, Poncheri A J, Phillips R L and El-Sayed M A 2010 J. Am. Chem. Soc. 132 2633
[25] Sosa I O, Noguez C and Barrera R G 2003 J. Phys. Chem. B 107 6269
[26] Galush W J, Shelby S A, Mulvihill M J, Tao A, Yang P D and Groves J T 2009 Nano Letters 9 2077
[27] Zhou F, Li Z Y, Liu Y and Xia Y N 2008 J. Phys. Chem. C 112 20233
[28] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491 endfootnotesize
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[15] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
No Suggested Reading articles found!