Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067702    DOI: 10.1088/1674-1056/ab84db
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics

Ting Wang(王挺)1,3, Yan-Chen Fan(樊晏辰)2, Jie Xing(邢洁)1, Ze Xu(徐泽)3, Geng Li(李庚)3, Ke Wang(王轲)3, Jia-Gang Wu(吴家刚)1, Jian-Guo Zhu(朱建国)1
1 College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China;
2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
3 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  The electronic structures of lead-free piezoceramic (K0.5Na0.5)NbO3 (KNN) and La-doped KNN ((K0.5Na0.5)0.994La0.006NbO3) are studied by using first principles calculation on the basis of density functional theory (DFT). The results reveale that the piezoelectricity stems from strong hybridization between the Nb atom and the O atom. At the same time, the K or Na atoms are replaced by the La doping atoms, which brings about the anisotropic relaxation. The La doping reduces the forbidden band, at the same time it makes Fermi surfaces shift toward the energetic conduction band (CB) of KNN. With the increase of La-doping intent, the phase structure of KNN extends from O-phase to T-phase and improves the piezoelectric properties of KNN.
Keywords:  (K0.5Na0.5)NbO3 (KNN)      piezoelectricity      first-principles calculation      electronic structure  
Received:  20 February 2020      Revised:  26 March 2020      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
  77.84.Cg (PZT ceramics and other titanates)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572143, 51822206, and 51932010).
Corresponding Authors:  Ke Wang, Jian-Guo Zhu     E-mail:  wang-ke@tsinghua.edu.cn;nic0400@scu.edu.cn

Cite this article: 

Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国) First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics 2020 Chin. Phys. B 29 067702

[1] Jen C K, Maldague X, Adler E L and Shapiro G 1986 Ultrasonics 24 133
[2] Sugawara Y, Onitsuka K, Yoshikawa S, Xu Q C, Newnham R E and Uchino K 1992 J. Am. Ceram. Soc. 75 996
[3] Lous G M, Cornejo I A, McNulty T F, Safari A and Danforth S C 2000 J. Am. Ceram. Soc. 83 124
[4] Choi J J, Hahn B D, Ryu J, Yoon W H, Lee B K and Park D S 2009 Sens. Actuat. A-Phys. 153 89
[5] Manjón-Sanz A M and Dolgos M R 2018 Chem. Mater. 30 8718
[6] Rödel J, Jo W, Seifert K T P, Anton E M, Granzow T and Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153
[7] Zhang S, Xia R and Shrout T R 2007 J. Electroceram. 19 251
[8] Wu J G, Xiao D Q and Zhu J G 2015 Chem. Rev. 115 2559
[9] Hao J, Li W, Zhai J and Chen H 2019 Mater. Sci. Eng. R 135 1
[10] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X and Li J F 2017 J. Am. Chem. Soc. 139 3889
[11] Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T L, Zhao C L, Xiao D Q, Wu J G, Wang K, Li J F, Gu Y, Zhu J G and Pennycook S J 2017 Energ. Environ. Sci. 10 528
[12] Lv X, Wu J G, Xiao D Q, Zhu J G and Zhang X X 2018 J. Am. Ceram. Soc. 101 1191
[13] Thong H C, Li Q, Zhang M H, Zhao C, Huang K X, Li J F and Wang K 2018 J. Am. Ceram. Soc. 101 3393
[14] Xing J, Zheng T, Wu J G, Xiao D Q and Zhu J G 2018 J. Adv. Dielectr. 08 1830003
[15] Zheng T, Wu J G, Xiao D Q and Zhu J G 2018 Prog. Mater. Sci. 98 552
[16] Tan Z, Peng Y, An J, Zhang Q and Zhu J G 2019 J. Am. Ceram. Soc. 102 5262
[17] Peng Y, Tan Z, An J, Zhu J G and Zhang Q 2019 J. Eur. Ceram. Soc. 39 5252
[18] Li Q, Zhang R, Lv T Q and Zheng L M 2015 Chin. Phys. B 24 053101
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Blöchl P E 1994 Phys. Rev. B 50 17953
[22] Zhou S L, Zhao X, Jiang X P and Han X D 2012 Chin. J. Struc. Chem. 8 1095
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!