Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060305    DOI: 10.1088/1674-1056/ab8890
GENERAL Prev   Next  

Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field

Qiong-Tao Xie(谢琼涛)1, Xiao-Liang Liu(刘小良)2
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China;
2 School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  

We investigate a two-level quantum system driven by a Lorentzian-shaped pulse field. An analytical solution is presented in terms of the confluent Heun functions. It is shown that for specially chosen parameter conditions, there are a number of the exact analytical solutions in an explicit form. The dependence of the final transition probabilities in the two levels on the system parameters is derived analytically and confirmed numerically.

Keywords:  exact solution      Lorentzian-shaped pulse      two-level system  
Received:  10 February 2020      Revised:  29 March 2020      Accepted manuscript online: 
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  02.30.Gp (Special functions)  
  42.50.-p (Quantum optics)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: 

Project supported by the Natural Science Foundation of Hainan Province, China (Grant No. 2019RC179).

Corresponding Authors:  Qiong-Tao Xie     E-mail:  qiongtaoxie@yahoo.com

Cite this article: 

Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良) Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field 2020 Chin. Phys. B 29 060305

[1] Grifoni M and Hänggi P 1998 Phys. Rep. 304 229
[2] Chu S I and Telnov D A 2004 Phys. Rep. 390 1
[3] Kohler S, Lehmann J and Hänggi P 2005 Phys. Rep. 406 379
[4] Shapiro M and Brumer P 2006 Phys. Rep. 425 195
[5] Král P, Thanopulos I and Shapiro M 2007 Rev. Mod. Phys. 79 53
[6] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006
[7] Rosen N and Zener C 1932 Phys. Rev. 40 502
[8] Jha P K and Rostovtsev Y V 2010 Phys. Rev. A 81 033827
[9] Jha P K and Rostovtsev Y V 2010 Phys. Rev. A 82 015801
[10] Shahverdyan T A, Ishkhanyan T A, Grigoryan A E and Ishkhanyan A M 2015 J. Contemp. Physics (Armenian Ac. Sci.) 50 211
[11] Ishkhanyan A M, Shahverdyan T A and Ishkhanyan T A 2015 Eur. Phys. J. D 69 10
[12] Ishkhanyan A M and Grigoryan A E 2014 J. Phys. A: Math. Theor. 47 465205
[13] Xie Q 2018 Pramana-J. Phys. 91 19
[14] Bambini A and Berman P R 1981 Phys. Rev. A 23 2496
[15] Bambini A and Lindberg M 1984 Phys. Rev. A 30 794
[16] Hioe F T 1984 Phys. Rev. A 30 2100
[17] Hioe F T and Carroll C E 1985 Phys. Rev. A 32 1541
[18] Carroll C E and Hioe F T 1986 J. Phys. A: Math. Gen. 19 3579
[19] Carroll C E and Hioe F T 1990 Phys. Rev. A 41 2835
[20] Ishkhanyany A M 1997 J. Phys. A: Math. Gen. 30 1203
[21] Ishkhanyany A M 2000 J. Phys. A: Math. Gen. 33 5539
[22] Ronveaux A (ed) 1995 Heun’s Differential Equations (Oxford: Oxford University Press) p. 87
[23] Slavyanov S Y and Lay W 2000 Special Functions: A Unified Theory Based on Singularities (Oxford: Oxford University Press) p. 97
[24] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) p. 149
[25] Conover C W S 2011 Phys. Rev. A 84 063416
[26] Berman P R, Yan L X, Chiam K H and Sung R W 1998 Phys. Rev. A 57 79
[27] Wu J H, Artoni M and La Rocca G C 2014 Phys. Rev. Lett. 113 123004
[28] Wu J H, Artoni M and La Rocca G C 2015 Phys. Rev. A 91 033811
[29] Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys. 12 1139
[30] Yang F, Liu Y C and You L 2017 Phys. Rev. A 96 053845
[31] Choi Y, Hahn C, Yoon J W and Song S H 2018 Nat. Commun. 9 2182
[32] Konotop V V and Zezyulin D A 2018 Phys. Rev. Lett. 120 123902
[33] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S and Qiu C W 2019 Science 364 170
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[4] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[5] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[6] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[7] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[8] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[9] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[10] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[11] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[12] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
[13] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[14] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[15] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
No Suggested Reading articles found!