|
|
Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation |
Mahmoud Farout1, Ramazan Sever2, Sameer M. Ikhdair1,3 |
1 Department of Physics, An-Najah National University, Nablus, Palestine; 2 Department of Physics, Middle East Technical University, Ankara 06531, Turkey; 3 Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey |
|
|
Abstract We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schrödinger equation, the Feinberg-Horodecki equation, with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
|
Received: 25 February 2020
Revised: 19 March 2020
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
Corresponding Authors:
Mahmoud Farout
E-mail: m.qaroot@najah.edu
|
Cite this article:
Mahmoud Farout, Ramazan Sever, Sameer M. Ikhdair Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation 2020 Chin. Phys. B 29 060303
|
[1] |
Park T J 2002 Bull. Korean Chem. Soc. 23 1733
|
[2] |
Vorobeichik I, Lefebvre R and Moiseyev N 1998 Europhys. Lett. 41 111
|
[3] |
Shen J Q 2003 arXiv:0310179[quant-ph]
|
[4] |
Feng M 2001 Phys. Rev. A 64 034101
|
[5] |
Horodecki R 1988 Il Nuovo Cimento B 102 27
|
[6] |
Feinberg G 1967 Phys. Rev. 159 1089
|
[7] |
Molski M 2006 Eur. Phys. J. D. 40 411
|
[8] |
Molski M 2010 Biosystems 100 47
|
[9] |
Witten E 1981 Nuc. Phys. B 188 513
|
[10] |
Molski M 1988 Phys. J. B: At. Mol. Opt. Phys. 21 3449
|
[11] |
Recami E and Mignani R 1974 Riv. Nuovo Cim. 4 209
|
[12] |
Recami E 1986 Riv. Nuovo Cim. 9 1
|
[13] |
Molski M 1999 Europhys. Lett. 48 115
|
[14] |
Hamzavi M, Ikhdair S M and Amirfakhrian M 2013 Theor. App. Phys. J. 7 40
|
[15] |
Eshghi M, Sever R and Ikhdair S M 2016 Eur. Phys. J. Plus 131 223
|
[16] |
Berkdemir C, Berkdemir A and Han J 2006 Chem. Phys. Lett. 417 326
|
[17] |
Sadeghi J 2007 Acta Phys. Polon. 112 23
|
[18] |
Sever R and Tezcan C 2008 Int. J. Mod. Phys. E 17 1327
|
[19] |
Kandirmaz N 2018 Math. Phys. J. 59 063510
|
[20] |
Cheng Y F and Dai T Q 2007 Phys. Scr. 75 274
|
[21] |
Hassanabadi H, Rahimov H and Zarrinkamar S 2011 Adv. High Energy Phys. 2011 458087
|
[22] |
Yan-Fu C and Tong-Qing D 2007 Commun. Theor. Phys. 48 431
|
[23] |
Ghodgaonkar A and Ramani K 1981 J. Chem. Soc. Faraday Trans. 77 209
|
[24] |
Khordad R 2013 Indian J. Phys. 87 623
|
[25] |
Babaei-Brojeny A A and Mokari M 2011 Phys. Scr. 84 045003
|
[26] |
Edet C, Okorie U, Ngiangia A and Ikot A 2019 Indian J. Phys. 94 425
|
[27] |
Okorie U, Edet C, Ikot A, Rampho G and Sever R 2020 Indian J. Phys. 94 (in press)
|
[28] |
Jia C S, Wang C W, Zhang L H, Peng X L, Tang H M and Zeng R 2018 Chem. Eng. Sci. 183 26
|
[29] |
Peng X L, Jiang R, Jia C S, Zhang L H and Zhao Y L 2018 Chem. Eng. Sci. 190 122
|
[30] |
Jia C S, Zeng R, Peng X L, Zhang L H and Zhao Y L 2018 Chem. Eng. Sci. 190 1
|
[31] |
Jia C S, Zhang L H, Peng X L, Luo J X, Zhao Y L, Liu J Y, Guo J J and Tang L D 2019 Chem. Eng. Sci. 202 70
|
[32] |
Jia C S, Wang C W, Zhang L H, Peng X L, Zeng R and You X T 2017 Chem. Phys. Lett. 676 150
|
[33] |
Jia C S, Wang C W, Zhang L H, Peng X L, Tang H M, Liu J Y, Xiong Y and Zeng R 2018 Chem. Phys. Lett. 692 57
|
[34] |
Jiang R, Jia C S, Wang Y Q, Peng X L and Zhang L H 2019 Chem. Phys. Lett. 715 186
|
[35] |
Chen X Y, Li J and Jia C S 2019 ACS Omega 4 16121
|
[36] |
Wang J, Jia C S, Li C J, Peng X L, Zhang L H and Liu J Y 2019 ACS Omega 4 19193
|
[37] |
Jia C S, Wang Y T, Wei L S, Wang C W, Peng X L and Zhang L H 2019 ACS Omega 4 20000
|
[38] |
Nikiforov A F and Uvarov V B 1988 Doklady Akademii Nauk SSSR 191 47 (in Russian)
|
[39] |
Kratzer A 1920 Z. Phys. A 3 289 (in Deutsch)
|
[40] |
Molski M 2007 arXiv:0706.3851 [quant-ph]
|
[41] |
Ikot A N, Okorie U, Th A, Onate C A, Edet C O, Akpan I O and Amadi P O 2020 Eclética Química J. 45 65
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|