Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060303    DOI: 10.1088/1674-1056/ab8379
GENERAL Prev   Next  

Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation

Mahmoud Farout1, Ramazan Sever2, Sameer M. Ikhdair1,3
1 Department of Physics, An-Najah National University, Nablus, Palestine;
2 Department of Physics, Middle East Technical University, Ankara 06531, Turkey;
3 Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey
Abstract  We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schrödinger equation, the Feinberg-Horodecki equation, with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
Keywords:  quantized momentum states      Feinberg-Horodecki equation      the time-dependent screened Coulomb potential      and time-dependent modified Kratzer potential  
Received:  25 February 2020      Revised:  19 March 2020      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Pm (Relativistic wave equations)  
Corresponding Authors:  Mahmoud Farout     E-mail:  m.qaroot@najah.edu

Cite this article: 

Mahmoud Farout, Ramazan Sever, Sameer M. Ikhdair Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation 2020 Chin. Phys. B 29 060303

[1] Park T J 2002 Bull. Korean Chem. Soc. 23 1733
[2] Vorobeichik I, Lefebvre R and Moiseyev N 1998 Europhys. Lett. 41 111
[3] Shen J Q 2003 arXiv:0310179[quant-ph]
[4] Feng M 2001 Phys. Rev. A 64 034101
[5] Horodecki R 1988 Il Nuovo Cimento B 102 27
[6] Feinberg G 1967 Phys. Rev. 159 1089
[7] Molski M 2006 Eur. Phys. J. D. 40 411
[8] Molski M 2010 Biosystems 100 47
[9] Witten E 1981 Nuc. Phys. B 188 513
[10] Molski M 1988 Phys. J. B: At. Mol. Opt. Phys. 21 3449
[11] Recami E and Mignani R 1974 Riv. Nuovo Cim. 4 209
[12] Recami E 1986 Riv. Nuovo Cim. 9 1
[13] Molski M 1999 Europhys. Lett. 48 115
[14] Hamzavi M, Ikhdair S M and Amirfakhrian M 2013 Theor. App. Phys. J. 7 40
[15] Eshghi M, Sever R and Ikhdair S M 2016 Eur. Phys. J. Plus 131 223
[16] Berkdemir C, Berkdemir A and Han J 2006 Chem. Phys. Lett. 417 326
[17] Sadeghi J 2007 Acta Phys. Polon. 112 23
[18] Sever R and Tezcan C 2008 Int. J. Mod. Phys. E 17 1327
[19] Kandirmaz N 2018 Math. Phys. J. 59 063510
[20] Cheng Y F and Dai T Q 2007 Phys. Scr. 75 274
[21] Hassanabadi H, Rahimov H and Zarrinkamar S 2011 Adv. High Energy Phys. 2011 458087
[22] Yan-Fu C and Tong-Qing D 2007 Commun. Theor. Phys. 48 431
[23] Ghodgaonkar A and Ramani K 1981 J. Chem. Soc. Faraday Trans. 77 209
[24] Khordad R 2013 Indian J. Phys. 87 623
[25] Babaei-Brojeny A A and Mokari M 2011 Phys. Scr. 84 045003
[26] Edet C, Okorie U, Ngiangia A and Ikot A 2019 Indian J. Phys. 94 425
[27] Okorie U, Edet C, Ikot A, Rampho G and Sever R 2020 Indian J. Phys. 94 (in press)
[28] Jia C S, Wang C W, Zhang L H, Peng X L, Tang H M and Zeng R 2018 Chem. Eng. Sci. 183 26
[29] Peng X L, Jiang R, Jia C S, Zhang L H and Zhao Y L 2018 Chem. Eng. Sci. 190 122
[30] Jia C S, Zeng R, Peng X L, Zhang L H and Zhao Y L 2018 Chem. Eng. Sci. 190 1
[31] Jia C S, Zhang L H, Peng X L, Luo J X, Zhao Y L, Liu J Y, Guo J J and Tang L D 2019 Chem. Eng. Sci. 202 70
[32] Jia C S, Wang C W, Zhang L H, Peng X L, Zeng R and You X T 2017 Chem. Phys. Lett. 676 150
[33] Jia C S, Wang C W, Zhang L H, Peng X L, Tang H M, Liu J Y, Xiong Y and Zeng R 2018 Chem. Phys. Lett. 692 57
[34] Jiang R, Jia C S, Wang Y Q, Peng X L and Zhang L H 2019 Chem. Phys. Lett. 715 186
[35] Chen X Y, Li J and Jia C S 2019 ACS Omega 4 16121
[36] Wang J, Jia C S, Li C J, Peng X L, Zhang L H and Liu J Y 2019 ACS Omega 4 19193
[37] Jia C S, Wang Y T, Wei L S, Wang C W, Peng X L and Zhang L H 2019 ACS Omega 4 20000
[38] Nikiforov A F and Uvarov V B 1988 Doklady Akademii Nauk SSSR 191 47 (in Russian)
[39] Kratzer A 1920 Z. Phys. A 3 289 (in Deutsch)
[40] Molski M 2007 arXiv:0706.3851 [quant-ph]
[41] Ikot A N, Okorie U, Th A, Onate C A, Edet C O, Akpan I O and Amadi P O 2020 Eclética Química J. 45 65
[1] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[2] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[12] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[13] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[14] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[15] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
No Suggested Reading articles found!