Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010202    DOI: 10.1088/1674-1056/ac21c3
GENERAL Prev   Next  

Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method

Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军)
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We report theoretical studies of electron impact triple differential cross sections of two bio-molecules, pyrimidine and tetrahydrofurfuryl alcohol, in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of -5 °, -10 °, and -15 °. Present multi-center distorted-wave method well describes the experimental data, which was obtained by performing (e, 2e) experiment. The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential, which must be considered when the low energy electron interacts with DNA analogues.
Keywords:  (e      2e)      bio-molecules      multi-center distorted-wave method (MCDW)  
Received:  12 July 2021      Revised:  24 August 2021      Accepted manuscript online:  27 August 2021
PACS:  02.70.-c (Computational techniques; simulations)  
  03.65.-w (Quantum mechanics)  
  03.65.Nk (Scattering theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004370, 11534011, and 11934004) and the National Key Research and Development Program of China (Grant Nos. 2017YFA0402300 and 2019YFA0210004).
Corresponding Authors:  Maomao Gong     E-mail:  gongmm@ustc.edu.cn

Cite this article: 

Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军) Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method 2022 Chin. Phys. B 31 010202

[1] Alizadeh E, Orlando T M and Sanche L 2015 Annu. Rev. Phys. Chem. 66 379
[2] Bray I, Fursa D, Kadyrov A, Stelbovics A, Kheifets A and Mukhamedzhanov A 2012 Phys. Rep. 520 135
[3] Shukla M K and Leszczynski J 2008 Radiation Induced Molecular Phenomena in Nucleic Acids. Challenges and Advances In Computational Chemistry and Physics, Vol. 5 (Springer, Dordrecht)
[4] Boudaïffa B, Cloutier P, Hunting D, Huels, Sanche M A and Sanche L 2000 Science 287 1658
[5] Pimblott S M and Laverne J A 2007 Radiat. Phys. Chem. 76 1244
[6] Petrovic Z L, Marjanović S, Dujko S, Banković A, Malović G, Buckman S, Garcia G, White R and Brunger M 2014 Appl. Radiat. Isopotes. 83 148
[7] Francis Z, Incerti S, Capra R, Mascialino B, Montarou G, Stepan V and Villagrasa C 2011 Appl. Radiat. Isopotes. 69 220
[8] Champion C, Loirec C L and Stosic B 2012 Int. J. Radiat. Biol 88 54
[9] Bellm S M, Builth-Williams J D, Jones D B, Chaluvadi H, Madison D H, Ning C G, Wang F, Ma X G, Lohmann B and Brunger M J 2012 J. Chem. Phys. 136 244301
[10] Borisenko K B, Samdal S, Shishkov I F and Vilkov L V 1998 J. Mol. Struct. 448 29
[11] Colyer C J, Bellm S M, Lohmann B, Hanne G F, Al-Hagan O, Madison D H and Ning C G 2010 J. Chem. Phys. 133 124302
[12] Builth-Williams J D, Bellm S M, Chiari L, Thorn P A, Jones D B, Chaluvadi H, Madison D H, Ning C G, Lohmann B, da Silva G B and Brunger M J 2013 J. Chem. Phys. 139 034306
[13] Builth-Williams J D, Bellm S M, Jones D B, Chaluvadi H, Madison D H, Ning C G, Lohmann B and Brunger M J 2012 J. Chem. Phys. 136 024304
[14] Jones D, Builth-Williams J, Bellm S, Chiari L, Chaluvadi H, Madison D, Ning C, Lohmann B, Ingólfsson O and Brunger M 2013 Chem. Phys. Lett. 572 32
[15] Bellm S M, Colyer C J, Lohmann B and Champion C 2012 Phys. Rev. A 85 022710
[16] Madison D H and Al-Hagan O 2010 J. At. Mol. Opt. Phys. 2010 1
[17] Gao J, Madison D H and Peacher J L 2005 Phys. Rev. A 72 032721
[18] Gao J, Peacher J L and Madison D H 2005 J. Chem. Phys. 123 204302
[19] Gao J, Madison D H and Peacher J L 2005 J. Chem. Phys. 123 204314
[20] Gao J, Madison D H and Peacher J L 2005 Phys. Rev. A 72 020701
[21] Gao J, Madison D H, Peacher J L, Murray A J and Hussey M J 2006 J. Chem. Phys. 124 194306
[22] Gao J, Madison D H and Peacher J L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1275
[23] Chaluvadi H, Ning C G and Madison D 2014 Phys. Rev. A. 89 062712
[24] Ali E, Nixon K, Murray A, Ning C, Colgan J and Madison D 2015 Phys. Rev. A 92 042711
[25] Ren X, Amami S, Hossen K, Ali E, Ning C, Colgan J, Madison D and Dorn A 2017 Phys. Rev. A 95 022701
[26] Ali E, Chakraborty H S and Madison D H 2020 J. Chem. Phys. 152 124303
[27] Mouawad L, Hervieux P A, Dal Cappello C, Pansanel J, Osman A, Khalil M and Bitar Z E 2017 J. Phys. B: At., Mol. Opt. Phys. 50 215204
[28] Mouawad L, Hervieux P, Dal Cappello C, Pansanel J, Robert V and Bitar Z E 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175201
[29] Mouawad L, Hervieux P, Dal Cappello C, Pansane J, Robert V and Bitar Z E 2019 Eur. Phys. J. D 73 76
[30] Mouawad L, Hervieux P A, Cappello C D and Bitar Z E 2019 J. Phys. B: At. Mol. Opt. Phys. 53 025202
[31] Zhang S b, Li X Y, Wang J G, Qu Y Z and Chen X 2014 Phys. Rev. A. 89 052711
[32] Li X, Gong M, Liu L, Wu Y, Wang J, Qu Y and Chen X 2017 Phys. Rev. A. 95 012703
[33] Gong M, Li X, Zhang S B, Liu L, Wu Y, Wang J, Qu Y and Chen X 2017 Phys. Rev. A. 96 042703
[34] Gong M, Li X, Zhang S B and Chen X 2018 J. Phys. B: At. Mol. Opt. Phys. 51 094003
[35] Xu X, Gong M, Li X, Zhang S B and Chen X 2018 J. Chem. Phys. 148 244104
[36] Wang Z, Gong M, Li X, Zhang S B and Chen X 2021 J. Electron Spectrosc. Relat. Phenom. 248 147059
[37] Sanna N and Gianturco F 2000 Comput. Phys. Commun. 128 139
[38] Sanna N and Morelli G 2004 Comput. Phys. Commun. 162 51
[39] Sanna N, Baccarelli I and Morelli G 2009 Comput. Phys. Commun. 180 2544
[40] Head-Gordon M, Pople J A and Frisch M J 1988 Chem. Phys. Lett. 153 503
[41] Sæbø S and Almlöf J 1989 Chem. Phys. Lett. 154 83
[42] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 275
[43] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 281
[44] Head-Gordon M and Head-Gordon T 1994 Chem. Phys. Lett. 220 122
[45] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
[46] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.02, 2009. Technical Report.
[47] Becke A D 1993 J. Chem. Phys. 98 5648
[48] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[3] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[4] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[5] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[6] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[7] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[8] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[9] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[10] Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis
Tian-Long Li(李天龙), Zheng Wei(魏征), and Wei-Shi Wan(万唯实). Chin. Phys. B, 2021, 30(12): 120702.
[11] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[12] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[13] Single SH guided wave mode generation method for PPM EMATs
Guo-Fu Zhai(翟国富), Yong-Qian Li(李永虔). Chin. Phys. B, 2020, 29(5): 054303.
[14] Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel
Chun-Hong Yang(杨春红) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2020, 29(11): 114101.
[15] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
No Suggested Reading articles found!