|
|
Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method |
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛)†, Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军) |
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We report theoretical studies of electron impact triple differential cross sections of two bio-molecules, pyrimidine and tetrahydrofurfuryl alcohol, in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of -5 °, -10 °, and -15 °. Present multi-center distorted-wave method well describes the experimental data, which was obtained by performing (e, 2e) experiment. The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential, which must be considered when the low energy electron interacts with DNA analogues.
|
Received: 12 July 2021
Revised: 24 August 2021
Accepted manuscript online: 27 August 2021
|
PACS:
|
02.70.-c
|
(Computational techniques; simulations)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Nk
|
(Scattering theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004370, 11534011, and 11934004) and the National Key Research and Development Program of China (Grant Nos. 2017YFA0402300 and 2019YFA0210004). |
Corresponding Authors:
Maomao Gong
E-mail: gongmm@ustc.edu.cn
|
Cite this article:
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军) Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method 2022 Chin. Phys. B 31 010202
|
[1] Alizadeh E, Orlando T M and Sanche L 2015 Annu. Rev. Phys. Chem. 66 379 [2] Bray I, Fursa D, Kadyrov A, Stelbovics A, Kheifets A and Mukhamedzhanov A 2012 Phys. Rep. 520 135 [3] Shukla M K and Leszczynski J 2008 Radiation Induced Molecular Phenomena in Nucleic Acids. Challenges and Advances In Computational Chemistry and Physics, Vol. 5 (Springer, Dordrecht) [4] Boudaïffa B, Cloutier P, Hunting D, Huels, Sanche M A and Sanche L 2000 Science 287 1658 [5] Pimblott S M and Laverne J A 2007 Radiat. Phys. Chem. 76 1244 [6] Petrovic Z L, Marjanović S, Dujko S, Banković A, Malović G, Buckman S, Garcia G, White R and Brunger M 2014 Appl. Radiat. Isopotes. 83 148 [7] Francis Z, Incerti S, Capra R, Mascialino B, Montarou G, Stepan V and Villagrasa C 2011 Appl. Radiat. Isopotes. 69 220 [8] Champion C, Loirec C L and Stosic B 2012 Int. J. Radiat. Biol 88 54 [9] Bellm S M, Builth-Williams J D, Jones D B, Chaluvadi H, Madison D H, Ning C G, Wang F, Ma X G, Lohmann B and Brunger M J 2012 J. Chem. Phys. 136 244301 [10] Borisenko K B, Samdal S, Shishkov I F and Vilkov L V 1998 J. Mol. Struct. 448 29 [11] Colyer C J, Bellm S M, Lohmann B, Hanne G F, Al-Hagan O, Madison D H and Ning C G 2010 J. Chem. Phys. 133 124302 [12] Builth-Williams J D, Bellm S M, Chiari L, Thorn P A, Jones D B, Chaluvadi H, Madison D H, Ning C G, Lohmann B, da Silva G B and Brunger M J 2013 J. Chem. Phys. 139 034306 [13] Builth-Williams J D, Bellm S M, Jones D B, Chaluvadi H, Madison D H, Ning C G, Lohmann B and Brunger M J 2012 J. Chem. Phys. 136 024304 [14] Jones D, Builth-Williams J, Bellm S, Chiari L, Chaluvadi H, Madison D, Ning C, Lohmann B, Ingólfsson O and Brunger M 2013 Chem. Phys. Lett. 572 32 [15] Bellm S M, Colyer C J, Lohmann B and Champion C 2012 Phys. Rev. A 85 022710 [16] Madison D H and Al-Hagan O 2010 J. At. Mol. Opt. Phys. 2010 1 [17] Gao J, Madison D H and Peacher J L 2005 Phys. Rev. A 72 032721 [18] Gao J, Peacher J L and Madison D H 2005 J. Chem. Phys. 123 204302 [19] Gao J, Madison D H and Peacher J L 2005 J. Chem. Phys. 123 204314 [20] Gao J, Madison D H and Peacher J L 2005 Phys. Rev. A 72 020701 [21] Gao J, Madison D H, Peacher J L, Murray A J and Hussey M J 2006 J. Chem. Phys. 124 194306 [22] Gao J, Madison D H and Peacher J L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1275 [23] Chaluvadi H, Ning C G and Madison D 2014 Phys. Rev. A. 89 062712 [24] Ali E, Nixon K, Murray A, Ning C, Colgan J and Madison D 2015 Phys. Rev. A 92 042711 [25] Ren X, Amami S, Hossen K, Ali E, Ning C, Colgan J, Madison D and Dorn A 2017 Phys. Rev. A 95 022701 [26] Ali E, Chakraborty H S and Madison D H 2020 J. Chem. Phys. 152 124303 [27] Mouawad L, Hervieux P A, Dal Cappello C, Pansanel J, Osman A, Khalil M and Bitar Z E 2017 J. Phys. B: At., Mol. Opt. Phys. 50 215204 [28] Mouawad L, Hervieux P, Dal Cappello C, Pansanel J, Robert V and Bitar Z E 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175201 [29] Mouawad L, Hervieux P, Dal Cappello C, Pansane J, Robert V and Bitar Z E 2019 Eur. Phys. J. D 73 76 [30] Mouawad L, Hervieux P A, Cappello C D and Bitar Z E 2019 J. Phys. B: At. Mol. Opt. Phys. 53 025202 [31] Zhang S b, Li X Y, Wang J G, Qu Y Z and Chen X 2014 Phys. Rev. A. 89 052711 [32] Li X, Gong M, Liu L, Wu Y, Wang J, Qu Y and Chen X 2017 Phys. Rev. A. 95 012703 [33] Gong M, Li X, Zhang S B, Liu L, Wu Y, Wang J, Qu Y and Chen X 2017 Phys. Rev. A. 96 042703 [34] Gong M, Li X, Zhang S B and Chen X 2018 J. Phys. B: At. Mol. Opt. Phys. 51 094003 [35] Xu X, Gong M, Li X, Zhang S B and Chen X 2018 J. Chem. Phys. 148 244104 [36] Wang Z, Gong M, Li X, Zhang S B and Chen X 2021 J. Electron Spectrosc. Relat. Phenom. 248 147059 [37] Sanna N and Gianturco F 2000 Comput. Phys. Commun. 128 139 [38] Sanna N and Morelli G 2004 Comput. Phys. Commun. 162 51 [39] Sanna N, Baccarelli I and Morelli G 2009 Comput. Phys. Commun. 180 2544 [40] Head-Gordon M, Pople J A and Frisch M J 1988 Chem. Phys. Lett. 153 503 [41] Sæbø S and Almlöf J 1989 Chem. Phys. Lett. 154 83 [42] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 275 [43] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 281 [44] Head-Gordon M and Head-Gordon T 1994 Chem. Phys. Lett. 220 122 [45] Dunning Jr T H 1989 J. Chem. Phys. 90 1007 [46] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.02, 2009. Technical Report. [47] Becke A D 1993 J. Chem. Phys. 98 5648 [48] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|