|
|
Quantum entanglement dynamics based oncomposite quantum collision model |
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓) |
School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China |
|
|
Abstract By means of composite quantum collision models, we study the entanglement dynamics of a bipartite system, i.e., two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA, while SA is in turn coupled to a thermal reservoir. We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics. We show that even if the system is initially in the separated state, their entanglement can be generated due to the interaction between the qubits. In the long-time limit, the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature. We also study the dynamics of tripartite entanglement of the three qubits S1, S2, and SA when they are initially prepared in the GHZ state and separated state, respectively. For the GHZ initial state, the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.
|
Received: 06 January 2020
Revised: 05 March 2020
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115 and 11974209), the Taishan Scholar Project of Shandong Province of China (Grant No. tsqn201812059), and the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2016JL005). |
Corresponding Authors:
Yun-Jie Xia, Zhong-Xiao Man
E-mail: yjxia@qfnu.edu.cn;zxman@qfnu.edu.cn
|
Cite this article:
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓) Quantum entanglement dynamics based oncomposite quantum collision model 2020 Chin. Phys. B 29 060302
|
[1] |
Bennett C H and DiVincenzo D P 2000 Nature 404 247
|
[2] |
Nielsen M A and Chuang I L 2000 (Cambridge: Cambridge University Press)
|
[3] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters K W 1993 Phys. Rev. Lett. 70 1895
|
[4] |
Jennewein T, Weihs G, Pan J W and Zeilinger A 2001 Phys. Rev. Lett. 88 017903
|
[5] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[6] |
Yu T and Eberly J H 2006 Opt. Commun. 264 393
|
[7] |
André G S L and George E A M 2009 Phys. Rev. A 80 032315
|
[8] |
Yönaç M, Yu T and Eberly J H 2006 J. Phys. B 39 S621
|
[9] |
Yu T and Eberly J H 2009 Science. 323 598
|
[10] |
Yönaç M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
|
[11] |
Roszak K, Horodecki P and Horodecki R 2010 Phys. Rev. A 81 042308
|
[12] |
Sainz I and Björk G 2007 Phys. Rev. A 76 042313
|
[13] |
Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 4676
|
[14] |
Sadiek G, Al-drees W and Abdallah M S 2019 Opt. Express 27 33799
|
[15] |
Ma X S, Wang A M, Yang X D and Xu F 2006 Eur. Phys. J. D 37 135
|
[16] |
Pan C N, Li F, Fang J S and Fang M F 2011 Chin. Phys. B 20 020304
|
[17] |
Zhang Y J, Man Z X, Zou X B, Xia Y J and Guo G C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 045502
|
[18] |
Sainz I, Klimov A B and Roa L 2006 Phys. Rev. A 73 032303
|
[19] |
Man Z X and Xia Y J 2008 Chin. Phys. B 17 3198
|
[20] |
Goold J, Huber M, Riera A, del Rio L and Skrzypczyk P 2016 J. Phys. A: Math. Theor. 49 143001
|
[21] |
Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
|
[22] |
Sinaysky I, Petruccione F and Burgarth D 2008 Phys. Rev. A 78 062301
|
[23] |
Rau J 1963 Phys. Rev. 129 1880
|
[24] |
Bernardes N K, Carvalho A R R, Monken C H and Santos M F 2017 Phys. Rev. A 95 032117
|
[25] |
McCloskey R and Paternostro M 2014 Phys. Rev. A 89 052120
|
[26] |
Man Z X, Xia Y J and Franco R L 2018 Phys. Rev. A 97 062104
|
[27] |
Zhang Q, Man Z X and Xia Y J 2019 Phys. Lett. A 383 2456
|
[28] |
Lorenzo S, Ciccarello F and Palma G M 2017 Phys. Rev. A 96 032107
|
[29] |
Kretschmer S, Luoma K and Strunz W T 2016 Phys. Rev. A 94 012106
|
[30] |
Ciccarello F, Palma G M and Giovannetti V 2013 Phys. Rev. A 87 040103(R)
|
[31] |
Lorenzo S, Ciccarello F and Palma G M 2016 Phys. Rev. A 93 052111
|
[32] |
De Chiara G, Landi G, Hewgill A, Reid B, Ferraro A, Roncaglia A J and Antezza M 2018 New J. Phys. 20 113024
|
[33] |
Man Z X, Xia Y J and Franco R L 2019 Phys. Rev. A 99 042106
|
[34] |
Tavis M and Cunnings F W 1968 Phys. Rev. 170 379
|
[35] |
Scarani V, Ziman M, Štelmachovič P, Gisin N and Bužek V 2002 Phys. Rev. Lett. 88 097905
|
[36] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[37] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[38] |
Audenaert K, Plenio M B and Eisert J 2003 Phys. Rev. Lett. 90 027901
|
[39] |
Guo J, Wei Z F and Zhang S Y 2016 Chin. Phys. B 25 020302
|
[40] |
Hashemi Rafsanjani S M and Eberly J H 2015 Phys. Rev. A 91 012313
|
[41] |
Wang F and Qiu J 2014 Chin. Phys. B 23 044203
|
[42] |
Hashemi Rafsanjani S M, Huber M, Broadbent C J and Eberly J H 2012 Phys. Rev. A 86 062303
|
[43] |
Campbell S, Ciccarello F, Palma G M and Vacchini B 2018 Phys. Rev. A 98 012142
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|