Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110203    DOI: 10.1088/1674-1056/ac0529
GENERAL Prev   Next  

Connes distance of 2D harmonic oscillators in quantum phase space

Bing-Sheng Lin(林冰生)1,2,† and Tai-Hua Heng(衡太骅)3
1 School of Mathematics, South China University of Technology, Guangzhou 510641, China;
2 Laboratory of Quantum Science and Engineering, South China University of Technology, Guangzhou 510641, China;
3 School of Physics and Material Science, Anhui University, Hefei 230601, China
Abstract  We study the Connes distance of quantum states of two-dimensional (2D) harmonic oscillators in phase space. Using the Hilbert-Schmidt operatorial formulation, we construct a boson Fock space and a quantum Hilbert space, and obtain the Dirac operator and a spectral triple corresponding to a four-dimensional (4D) quantum phase space. Based on the ball condition, we obtain some constraint relations about the optimal elements. We construct the corresponding optimal elements and then derive the Connes distance between two arbitrary Fock states of 2D quantum harmonic oscillators. We prove that these two-dimensional distances satisfy the Pythagoras theorem. These results are significant for the study of geometric structures of noncommutative spaces, and it can also help us to study the physical properties of quantum systems in some kinds of noncommutative spaces.
Keywords:  Connes distance      noncommutative geometry      harmonic oscillator  
Received:  23 February 2021      Revised:  21 April 2021      Accepted manuscript online:  26 May 2021
PACS:  02.40.Gh (Noncommutative geometry)  
  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
Fund: Project supported by the Key Research and Development Project of Guangdong Province, China (Grant No. 2020B0303300001), the National Natural Science Foundation of China (Grant No. 11911530750), the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515011703), the Fundamental Research Funds for the Central Universities, China (Grant No. 2019MS109), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA16).
Corresponding Authors:  Bing-Sheng Lin     E-mail:  sclbs@scut.edu.cn

Cite this article: 

Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅) Connes distance of 2D harmonic oscillators in quantum phase space 2021 Chin. Phys. B 30 110203

[1] Connes A 1994 Noncommutative geometry (New York: Academic Press)
[2] Moyal J E 1949 Proc. Camb. Philos. Soc. 45 99
[3] Gracia-Bondía J M and Várilly J C 1988 J. Math. Phys. 29 869
[4] Gayral V, Gracia-Bondía J M, Iochum B, Schücker T and Várilly 2004 Commun. Math. Phys. 246 569
[5] Jing S C and Lin B S 2008 Phys. Lett. A 372 7109
[6] Madore J 1992 Class. Quantum Grav. 9 69
[7] Grosse H and Prešnajder P 1995 Lett. Math. Phys. 33 171
[8] Lin B S and Heng T H 2011 Chin. Phys. Lett. 28 070303
[9] Yu X M and Li K 2009 Chin. Phys. B 18 03670
[10] Lin B S and Heng T H 2016 Chin. Phys. Lett. 33 110303
[11] Wang B Q, Long Z W, Long C Y and Wu S R 2018 Chin. Phys. B 27 010301
[12] Connes A 1989 Ergodic Theory Dynam. Systems 9 207
[13] Bimonte G, Lizzi F and Sparano G 1994 Phys. Lett. B 341 139
[14] Cagnache E, D'Andrea F, Martinetti P and Wallet J C 2011 J. Geom. Phys. 61 1881
[15] Martinetti P and Tomassini L 2013 Commun. Math. Phys. 323 107
[16] D'Andrea F and Martinetti P 2013 Lett. Math. Phys. 103 469
[17] Franco N and Wallet J C 2016 Contemporary Mathematics 676 147
[18] Scholtz F G and Chakraborty B 2013 J. Phys. A: Math. Theor. 46 085204
[19] Chaoba Devi Y, Prajapat S, Mukhopadhyay A K, Chakraborty B and Scholtz F G 2015 J. Math. Phys. 56 041707
[20] Chaoba Devi Y, Kumar K, Chakraborty B and Scholtz F G 2018 Int. J. Geo. Methods Mod. Phys. 15 1850204
[21] Kumar K and Chakraborty B 2018 Phys. Rev. D 97 086019
[22] Chakraborty A and Chakraborty B 2020 Int. J. Geo. Methods Mod. Phys. 17 2050089
[23] Scholtz F G, Gouba L, Hafver A and Rohwer C M 2009 J. Phys. A: Math. Theor. 42 175303
[24] Lin B S and Jing S C 2008 Phys. Lett. A 372 4880
[25] Lin B S, Xu J and Heng T H 2019 Mod. Phys. Lett. A 34 1950269
[26] Iochum B, Krajewski T and Martinetti P 2001 J. Geom. Phys. 37 100
[1] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[2] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[3] Quantum pseudodots under the influence of external vector and scalar fields
M Eshghi, S M Ikhdair. Chin. Phys. B, 2018, 27(8): 080303.
[4] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[5] Quantum and semiclassical studies on photodetachment cross sections of H- in a harmonic potential
Hai-Jun Zhao(赵海军), Wei-Long Liu(刘伟龙), Meng-Li Du(杜孟利). Chin. Phys. B, 2016, 25(3): 033203.
[6] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[7] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[8] Singularities of noncompact charged objects
M. Sharif, G. Abbas. Chin. Phys. B, 2013, 22(3): 030401.
[9] The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential
H. Hassanabadi, M. Kamali. Chin. Phys. B, 2013, 22(10): 100304.
[10] Effects of anisotropy and magnetic fields on the specific heat of a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot
Zhai Zhi-Yuan(翟智远), Li Yu-Qi(李玉奇) , and Pan Xiao-Yin(潘孝胤) . Chin. Phys. B, 2012, 21(7): 070506.
[11] Effects of external fields on two-dimensional Klein–Gordon particle under pseudo-harmonic oscillator interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2012, 21(11): 110302.
[12] Generation-channel interference of high-order harmonics of an anharmonic oscillator driven by bi-chrime laser fields and its mechanism
Wang Li-Ming(王黎明), Cai Jun(蔡俊), and Qiao Hao-Xue(乔豪学). Chin. Phys. B, 2011, 20(7): 073202.
[13] Atomic coherent states as energy eigenstates of a Hamiltonian describing a two-dimensional anisotropic harmonic potential in a uniform magnetic field
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2010, 19(12): 124205.
[14] One-loop renormalizability of noncommutative U(1) gaugetheory with scalar fields
Huang Jia-Hui(黄家辉) and Sheng Zheng-Mao(盛正卯). Chin. Phys. B, 2010, 19(1): 010316.
[15] New representation of the multimode phase shifting operator and its application
Wang Shuai(王帅), Jiang Ji-Jian(蒋继建), Xu Shi-Min(徐世民), and Li Hong-Qi(李洪奇) . Chin. Phys. B, 2010, 19(1): 014208.
No Suggested Reading articles found!