Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010312    DOI: 10.1088/1674-1056/ac364a
Special Issue: SPECIAL TOPIC — Non-Hermitian physics
SPECIAL TOPIC—Non-Hermitian physics Prev   Next  

Topology of a parity-time symmetric non-Hermitian rhombic lattice

Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智)
School of Physics, Nankai University, Tianjin 300071, China
Abstract  We investigate the topological properties of a trimerized parity-time ($ \mathcal{PT}$) symmetric non-Hermitian rhombic lattice. Although the system is $\mathcal{PT}$-symmetric, the topology is not inherited from the Hermitian lattice; in contrast, the topology can be altered by the non-Hermiticity and depends on the couplings between the sublattices. The bulk-boundary correspondence is valid and the Bloch bulk captures the band topology. Topological edge states present in the two band gaps and are predicted from the global Zak phase obtained through the Wilson loop approach. In addition, the anomalous edge states compactly localize within two diamond plaquettes at the boundaries when all bands are flat at the exceptional point of the lattice. Our findings reveal the topological properties of the $\mathcal{PT}$-symmetric non-Hermitian rhombic lattice and shed light on the investigation of multi-band non-Hermitian topological phases.
Keywords:  topological phase      $\mathcal{PT}$ symmetry      Wilson loop  
Received:  19 August 2021      Revised:  17 October 2021      Accepted manuscript online:  04 November 2021
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11975128 and 11874225).
Corresponding Authors:  Liang Jin     E-mail:  jinliang@nankai.edu.cn

Cite this article: 

Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智) Topology of a parity-time symmetric non-Hermitian rhombic lattice 2022 Chin. Phys. B 31 010312

[1] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752
[2] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P and Chen Y F 2019 Adv. Mater. 32 1903639
[3] Zhang S Y, Fang M F, Zhang Y L, Guo Y N, Zhao Y J and Tang W W 2015 Chin. Phys. B 24 090304
[4] Zhao L C, Yang Z Y and Yang W L 2019 Chin. Phys. B 28 010501
[5] Dong Y, Zhang W J, Liu J and Xie X T 2019 Chin. Phys. B 28 114202
[6] Zhao W L, Gong P, Wang J and Wang Q 2020 Chin. Phys. B 29 120302
[7] Zhang D, Li X S, Zhang L L, Fan D Z, Jin Z and Gong W J 2020 J. Opt. Soc. Am. B 37 3407
[8] Wen J, Zheng C, Kong X, Wei S, Xin T and Long G 2019 Phys. Rev. A 99 062122
[9] Mao X, Qin G Q, Yang H, Zhang H, Wang M and Long G L 2020 New J. Phys. 22 093009
[10] Bian Z, Xiao L, Wang K, Zhan X, Onanga F A, Ruzicka F, Yi W, Joglekar Y N and Xue P 2020 Phys. Rev. Research 2 022039
[11] Zheng C, Hao L and Long G L 2013 Phil. Trans. R. Soc. A. 371 20120053
[12] Jin L and Song Z 2009 Phys. Rev. A 80 052107
[13] Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
[14] Hao X Z, Zhang X Y, Zhou Y H, Li W, Hou S C and Yi X X 2021 Phys. Rev. A 103 053508
[15] Xiao L, Deng T, Wang K, Wang Z, Yi W and Xue P 2021 Phys. Rev. Lett. 126 230402
[16] Jiang Z S, Hu D J, Pang L, Gao F H and Wang P 2018 Chin. Phys. B 27 054201
[17] Cao P C and Zhu X F 2021 Chin. Phys. B 30 030505
[18] Wang H, Qin Y, Ma J, Shen H, Hu Y and Jia X 2021 Chin. Phys. B 30 050301
[19] Zhang S M, Zhang X Z, Jin L and Song Z 2020 Phys. Rev. A 101 033820
[20] Jin L, Wu H C, Wei B B and Song Z 2020 Phys. Rev. B 101 045130
[21] Jin L 2018 Phys. Rev. A 97 012121
[22] Zheng C, Tian J, Li D, Wen J, Wei S and Li Y 2020 Entropy 22 812
[23] Chen C, Jin L and Liu R B 2019 New J. Phys. 21 083002
[24] Jiang H, Lang L J, Yang C, Zhu S L and Chen S 2019 Phys. Rev. B 100 054301
[25] Ge Z Y, Zhang Y R, Liu T, Li S W, Fan H and Nori F 2019 Phys. Rev. B 100 054105
[26] Wang X Y, Chen H Z, Li Y, Li B and Ma R M 2016 Chin. Phys. B 25 124211
[27] Liu J S, Han Y Z and Liu C S 2019 Chin. Phys. B 28 100304
[28] Liu H, Su Z, Zhang Z Q and Jiang H 2020 Chin. Phys. B 29 050502
[29] Jiang X P, Qiao Y and Cao J 2021 Chin. Phys. B 30 077101
[30] Liu H, Zhou J K, Wu B L, Zhang Z Q and Jiang H 2021 Phys. Rev. B 103 224203
[31] Teo W X, Li L, Zhang X and Gong J 2020 Phys. Rev. B 101 205309
[32] Xiao Y X, Ding K, Zhang R Y, Hang Z H and Chan C T 2020 Phys. Rev. B 102 245144
[33] Liu T, He J J, Yoshida T, Xiang Z L and Nori F 2020 Phys. Rev. B 102 235151
[34] Zhang X, Li G, Liu Y, Tai T, Thomale R and Lee C H 2021 Commun. Phys. 4 47
[35] Wang X R, Guo C X and Kou S P 2020 Phys. Rev. B 101 121116
[36] Luo X W and Zhang C 2019 Phys. Rev. Lett. 123 073601
[37] Zhao X M, Guo C X, Kou S P, Zhuang L and Liu W M 2021 Phys. Rev. B 104 205131
[38] Tang L Z, Zhang L F, Zhang G Q and Zhang D W 2020 Phys. Rev. A 101 063612
[39] Zhai L J, Huang G Y and Yin S 2021 Phys. Rev. B 104 014202
[40] Chen R, Chen C Z, Zhou B and Xu D H 2019 Phys. Rev. B 99 155431
[41] Zhou L 2020 Phys. Rev. B 101 014306
[42] Wu H and An J H 2020 Phys. Rev. B 102 041119
[43] Bao X X, Guo G F, Du X P, Gu H Q and Tan L 2021 J. Phys.: Condens. Matter 33 185401
[44] Wu Y J, Liu C C and Hou J 2020 Phys. Rev. A 101 043833
[45] Yang X, Cao Y and Zhai Y 2022 Chin. Phys. B 31 010308
[46] Zeng Q B, Yang Y B and Lü R 2020 Phys. Rev. B 101 125418
[47] Guo C X, Wang X R and Kou S P 2020 Phys. Rev. B 101 144439
[48] Murakami S, Nagaosa N and Zhang S C 2004 Phys. Rev. Lett. 93 156804
[49] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[50] Liu Z, Kovrizhin D L and Bergholtz E J 2013 Phys. Rev. B 88 081106
[51] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[52] Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q and Chan C T 2015 Nat. Phys. 11 240
[53] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[54] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljačić M 2015 Science 349 622
[55] Yi Y and Yang Z 2020 Phys. Rev. Lett. 125 186802
[56] Qin C, Wang B, Wong Z J, Longhi S and Lu P 2020 Phys. Rev. B 101 064303
[57] Qin S, Hu L, Le C, Zeng J, Zhang F C, Fang C and Hu J 2019 Phys. Rev. Lett. 123 027003
[58] Yang Z, Zhang K, Fang C and Hu J 2020 Phys. Rev. Lett. 125 226402
[59] Yang Z, Chiu C K, Fang C and Hu J 2020 Phys. Rev. Lett. 124 186402
[60] Xu Z and Chen S 2020 Phys. Rev. B 102 035153
[61] Liu C H, Zhang K, Yang Z and Chen S 2020 Phys. Rev. Research 2 043167
[62] Zhu B, Lü R and Chen S 2014 Phys. Rev. A 89 062102
[63] Bai W K, Yang T and Liu W M 2020 Phys. Rev. A 102 063318
[64] Wang H Y, Zheng Z, Zhuang L, Tai Y H, Shi J S and Liu W M 2020 J. Phys.: Condens. Matter 32 235701
[65] Wu Y J, Gao T B, Li N, Zhou J and Kou S P 2020 J. Phys.: Condens. Matter 32 145601
[66] He J, Kong X, Wang W and Kou S P 2018 New J. Phys. 20 053019
[67] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[68] Wang H, Ruan J and Zhang H 2019 Phys. Rev. B 99 075130
[69] Yang Z and Hu J 2019 Phys. Rev. B 99 081102
[70] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[71] Liu J S, Han Y Z and Liu C S 2020 Chin. Phys. B 29 010302
[72] Zhao X, Xing Y, Qi L, Liu S, Zhang S and Wang H F 2021 New J. Phys. 23 073043
[73] Lang L J, Weng Y, Zhang Y, Cheng E and Liang Q 2021 Phys. Rev. B 103 014302
[74] Li S, Liu M, Li F and Liu B 2021 Phys. Scr. 96 015402
[75] Xu K, Zhang X, Luo K, Yu R, Li D and Zhang H 2021 Phys. Rev. B 103 125411
[76] Lin Q, Xiao M, Yuan L and Fan S 2016 Nat. Commun. 7 13731
[77] Wang L, Liu Q and Zhang Y 2021 Chin. Phys. B 30 020506
[78] Zhang X X and Franz M 2020 Phys. Rev. Lett. 124 046401
[79] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[80] Liu F and Wakabayashi K 2021 Phys. Rev. Research 3 023121
[81] Xu Y, Wang S T and Duan L M 2017 Phys. Rev. Lett. 118 045701
[82] Liang S D and Huang G Y 2013 Phys. Rev. A 87 012118
[83] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[84] Lin S, Jin L, and Song Z 2019 Phys. Rev. B 99 165148
[85] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801
[86] Zhu B, Ke Y, Zhong H and Lee C 2020 Phys. Rev. Research 2 023043
[87] Wang X, Xiao L, Qiu X, Wang K, Yi W and Xue P 2018 Phys. Rev. A 98 013835
[88] Lee T E 2016 Phys. Rev. Lett. 116 133903
[89] Jin L and Song Z 2019 Phys. Rev. B 99 081103
[90] Yao S, Song F, and Wang Z 2018 Phys. Rev. Lett. 121 136802
[91] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402
[92] Jin L 2017 Phys. Rev. A 96 032103
[93] Wu H C, Jin L, and Song Z 2021 Phys. Rev. B 103 235110
[94] Qin W, Li, L and Zhang Z 2019 Nat. Phys. 15 796
[95] Skagerstam B S 992 arXiv:hep-th/9210054
[96] Wang H X, Guo G Y and Jiang J H 2019 New J. Phys. 21 093029
[1] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[4] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[5] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[6] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[7] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[8] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[9] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[10] Non-Hermitian quasicrystal in dimerized lattices
Longwen Zhou(周龙文) and Wenqian Han(韩雯岍). Chin. Phys. B, 2021, 30(10): 100308.
[11] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[12] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[13] Topological phases of a non-Hermitian coupled SSH ladder
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2019, 28(10): 100304.
[14] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[15] Topological phase in one-dimensional Rashba wire
Sa-Ke Wang(汪萨克), Jun Wang(汪军), Jun-Feng Liu(刘军丰). Chin. Phys. B, 2016, 25(7): 077305.
No Suggested Reading articles found!