1 School of Cyberspace Science, Dongguan University of Technology, Dongguan 523808, China; 2 College of Cyber Security, Jinan University, Guangzhou 510632, China
Abstract Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics. The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics. We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition (K-SVD) optimization. The observed signal is divided into segments and decomposed sparsely. The over-complete atomic library is constructed according to the differential equation of chaotic signals. The orthogonal matching pursuit algorithm is used to search the optimal matching atom. The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD. The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61872083) and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2017A030310659 and 2019A1515011123).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.