Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060505    DOI: 10.1088/1674-1056/ab8a3b
GENERAL Prev   Next  

Chaotic signal denoising algorithm based on sparse decomposition

Jin-Wang Huang(黄锦旺)1, Shan-Xiang Lv(吕善翔)2, Zu-Sheng Zhang(张足生)1, Hua-Qiang Yuan(袁华强)1
1 School of Cyberspace Science, Dongguan University of Technology, Dongguan 523808, China;
2 College of Cyber Security, Jinan University, Guangzhou 510632, China
Abstract  Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics. The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics. We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition (K-SVD) optimization. The observed signal is divided into segments and decomposed sparsely. The over-complete atomic library is constructed according to the differential equation of chaotic signals. The orthogonal matching pursuit algorithm is used to search the optimal matching atom. The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD. The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics.
Keywords:  sparse decomposition      denoising      K-SVD      chaotic signal  
Received:  27 February 2020      Revised:  10 April 2020      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61872083) and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2017A030310659 and 2019A1515011123).
Corresponding Authors:  Hua-Qiang Yuan     E-mail:  yuanhq@dgut.edu.cn

Cite this article: 

Jin-Wang Huang(黄锦旺), Shan-Xiang Lv(吕善翔), Zu-Sheng Zhang(张足生), Hua-Qiang Yuan(袁华强) Chaotic signal denoising algorithm based on sparse decomposition 2020 Chin. Phys. B 29 060505

[1] Alamodi A O A, Sun K H, Ai W, Chen C and Peng D 2019 Chin. Phys. B 28 020503
[2] Bi H Y, Qi G Y, Hu J B and Wu Q L 2020 Chin. Phys. B 29 020502
[3] Gao F, Li W Q, Tong H Q and Li Q L 2019 Chin. Phys. B 28 090501
[4] Wang W B, Zhang X D, Chang Y C, Wang X L, Wang Z, Chen X and Zheng L 2015 Chin. Phys. B 25 010202
[5] Yang H, Li Y A and Li G H 2015 Acta Armamentarii 36 2330 (in Chinese)
[6] Liu K, Li H, Dai X C and Xu P X 2008 JEIT 30 1849 (in Chinese)
[7] Wang M J, Zhou Z Q, Li Z J and Zeng Y C 2018 Acta Phys. Sin. 67 060501 (in Chinese)
[8] Lv S X and Feng J C 2013 Acta Phys. Sin. 62 230503 (in Chinese)
[9] Wang W B, Jin Y Y, Wang B, Li W G and Wang X L 2018 Acta Electron. Sin. 46 1652 (in Chinese)
[10] Hai S, Gao H W and Ruan X J 2016 Int. J. Signal Process., Image Process. and Pattern Recognit. 9 219
[11] Gao J B, Sultan H, Hu J and Tung W W 2010 IEEE Signal Process. Lett. 17 237
[12] Tung W W, Gao J B, Hu J and Yang L 2011 Phys. Rev. E 83 046210
[13] Wu Z H and Huang N E 2010 Adv. Adap. Data Anal. 2 397
[14] Wang M J, Zhou Z Q, Li Z J and Zeng Y C 2019 Circ. Syst. Signal Proces. 38 2471
[15] Donoho D L, Elad M and Temlyakov V N 2006 IEEE Trans. Inf. Theory 52 6
[16] Tseng P 2009 IEEE Trans. Inf. Theory 55 888
[17] Dumitrescu B and Irofti P 2017 IEEE Signal Proces. Lett. 24 309
[18] Karlovitz L A 1970 J. Appr. Theory 3 123
[19] Chen S S, Donoho D L and Saunders M A 2001 SIAM Rev. 43 129
[20] Cai T T and Wang L 2011 IEEE Trans. Inf. Theory 57 4680
[21] Karahanoglu N B and Erdogan H 2012 Digital Signal Proces.: A Rev. J. 22 555
[22] Tian J and Chen L 2012 IEEE Signal Proces. Lett. 19 395
[23] Chen P, Rong Y, Nordholm S and He Z Q 2017 IEEE Trans. Vehic. Technol. 66 10567
[24] Lee D J 2016 IEEE Commun. Lett. 20 2115
[25] Needell D and Vershynin R 2010 IEEE J. Sel. Top. Signal Proces. 4 310
[26] Chowdhury M S H, Hashim I and Momani S 2009 Chaos Soliton. Fract. 40 1929
[27] Lv S X, Wang Z S, Hu Z H and Feng J C 2014 Chin. Phys. B 23 010506
[28] Holger K and Thomas S 2004 Nonlinear Time Series Analysis (Cambridge: Cambridge University Press) pp. 65-74
[29] Elad M and Aharon M 2006 IEEE Trans. Image Proces. 15 3736
[1] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[2] Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy
Ya-Nan Cao(曹亚南), Gui-Shi Wang(王贵师), Tu Tan(谈图), Ting-Dong Cai(蔡廷栋), Kun Liu(刘锟), Lei Wang(汪磊), Gong-Dong Zhu(朱公栋), Jiao-Xu Mei(梅教旭). Chin. Phys. B, 2016, 25(10): 107403.
[3] Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating
Wen-Bo Wang(王文波), Xiao-Dong Zhang(张晓东), Yuchan Chang(常毓禅), Xiang-Li Wang(汪祥莉), Zhao Wang(王钊), Xi Chen(陈希), Lei Zheng(郑雷). Chin. Phys. B, 2016, 25(1): 010202.
[4] Signal reconstruction in wireless sensor networks based on a cubature Kalman particle filter
Huang Jin-Wang (黄锦旺), Feng Jiu-Chao (冯久超). Chin. Phys. B, 2014, 23(7): 070504.
[5] Gradient method for blind chaotic signal separation based on proliferation exponent
Lü Shan-Xiang (吕善翔), Wang Zhao-Shan (王兆山), Hu Zhi-Hui (胡志辉), Feng Jiu-Chao (冯久超). Chin. Phys. B, 2014, 23(1): 010506.
[6] Denoising via truncated sparse decomposition
Xie Zong-Bo(谢宗伯) and Feng Jiu-Chao(冯久超). Chin. Phys. B, 2011, 20(5): 050504.
[7] Filtering noisy chaotic signal via sparse representation based on random frame dictionary
Xie Zong-Bo(谢宗伯) and Feng Jiu-Chao(冯久超). Chin. Phys. B, 2010, 19(5): 050510.
No Suggested Reading articles found!