Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046801    DOI: 10.1088/1674-1056/25/4/046801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optoelectronic properties of SnO2 thin films sprayed at different deposition times

Allag Abdelkrim, Saâd Rahmane, Ouahab Abdelouahab, Attouche Hafida, Kouidri Nabila
Laboratoire de Physique des Couches Minces et Applications, Université de Biskra, BP 145 RP, 07000 Biskra, Algérie
Abstract  This article presents the elaboration of tin oxide (SnO2) thin films on glass substrates by using a home-made spray pyrolysis system. Effects of film thickness on the structural, optical, and electrical film properties are investigated. The films are characterized by several techniques such as x-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-Vis) transmission, and four-probe point measurements, and the results suggest that the prepared films are uniform and well adherent to the substrates. X-ray diffraction (XRD) patterns show that SnO2 film is of polycrystal with cassiterite tetragonal crystal structure and a preferential orientation along the (110) plane. The calculated grain sizes are in a range from 32.93 nm to 56.88 nm. Optical transmittance spectra of the films show that their high transparency average transmittances are greater than 65% in the visible region. The optical gaps of SnO2 thin films are found to be in a range of 3.64 eV-3.94 eV. Figures of merit for SnO2 thin films reveal that their maximum value is about 1.15×10-4 Ω-1 at λ = 550 nm. Moreover, the measured electrical resistivity at room temperature is on the order of 10-2 Ω·cm.
Keywords:  thin film      SnO2}      spray pyrolysis      thickness      properties  
Received:  19 November 2015      Revised:  15 December 2015      Accepted manuscript online: 
PACS:  68.55.ag (Semiconductors)  
  68.35.bg (Semiconductors)  
  81.05.Bx (Metals, semimetals, and alloys)  
Corresponding Authors:  Saâd Rahmane     E-mail:  rahmanesa@yahoo.fr

Cite this article: 

Allag Abdelkrim, Saâd Rahmane, Ouahab Abdelouahab, Attouche Hafida, Kouidri Nabila Optoelectronic properties of SnO2 thin films sprayed at different deposition times 2016 Chin. Phys. B 25 046801

[1] Kikuchi N, Kusano E, Kishio E and Kingara A 2002 Vacuum 66 365
[2] Man-Soo H, Lee H J, Jeong H S, Seo Y W and Kwon S J 2003 Surf. Coat. Technol. 29 171
[3] Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H and Niki S 2003 Thin Solid Films 431 369
[4] Wohlmuth W and Adesida I 2005 Thin Solid Films 479 223
[5] He H Jr, Wu T H, Hsin C L, Li K M, Chen L J, Chueh Y L, Chou L J and Wang Z L 2006 Small 2 116
[6] Cao H, Qiu X, Liang Y, Zhang L, Zhao M and Zhu Q 2006 Chem. Phys. Chem. 7 497
[7] Thangaraju B 2002 Thin Solid Films 402 71
[8] Abass A K 1987 Solid State Commun. 1 507
[9] Chopra K L, Major S and Pandya D K 1983 Thin Solid Films 102 1
[10] Chaudhuri U R, Ramkumar K and Satyam M 1990 J. Phys. D: Appl. Phys 23 994
[11] Afify H H, Terra F S and Momtaz R S 1996 J. Mater. Sci: Materials in Electronics 7 149
[12] Elangovan E, Singh M P and Ramamurthi K 2004 Mater. Sci. Eng. B 113 143
[13] Elangovan E and Ramamurthi K 2005 Thin Solid Films 476 231
[14] Thangaraju B 2002 Thin Solid Films 402 71
[15] Benouis C E, Benhaliliba M, Yakuphanoglu F, Tiburcio Silver A, Aida M S and Sanchez Juarez A 2011 Synthetic Metals 161 1509
[16] Caglar M, Caglar Y and Ilıcan S 2006 J. Optoelectron. Mater. 8 1410
[17] Elangovan E and Ramamurthi K 2005 Appl. Surf. Sci. 249 183
[18] Chacko S, Philip N S, Gophandran K G, Koshy P and Vaidyan V K 2008 Appl. Surf. Chem. 254 2179
[19] Kasar R R, Deshpande N G, Gudage Y G, Vyas J C and Ramphal S 2008 Physica B 403 3724
[20] Bedir M, Oztas M, Bakkaoglu O F and Ormanel R 2005 Eur. Phys. J. B 5 465
[21] Ashraf M, Akhtar S M J, Khan A F, Ali Z and Qayyum A 2011 J. Alloys Compd. 509 2414
[22] Ravichandran K, Muruganantham G and Sakthivel B 2009 Physica B 404 4299
[23] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi B 15 627
[24] Keskenler E F, Turgut G and Dogan S 2012 Superlattices and Microstructures 52 107
[25] Turgut G and Erdal S 2014 Superlattices and Microstructures 69 175
[26] Urbach F 1953 Phys. Rev. 92 1324
[27] Ali Yildirim M and Aytunç A 2010 Opt. Commun. 283 1370
[28] Benhaoua B, Abbas S, Rahal A, Benhaoua A and Aida M S 2015 Superlattices and Microstructures 83 78
[29] Mezrag F, Mohamed W K and Bouarissa N 2010 Physica B 405 2272
[30] Herve P and Vandamme L K J 1994 Infrared Phys. Technol. 35 609
[31] Born M, Wolf E 1975 Principle of Optics (New York: Pergamon) p. 85
[32] Chatelon J P, Terrier C and Roger J A 1999 Semicond. Sci. Technol. 14 642
[33] Sefardjella H, Boudjema B, Kabir A and Schmerber G 2013 J. Phys. Chem. Solids 74 1686
[34] Rahmane S, Aida M S, Djouadi M A and Barreau N 2015 Superlattices and Microstructures 79 148
[35] Memarian N and Rozati S M 2012 Acta Physica Polonica A 122 202
[36] Babar A R, Shinde S S, Moholkar A V, Bhosale C H, Kim J H and Rajpure K Y 2010 J. Alloys. Compd. 505 416
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[4] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[5] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[6] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[7] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[8] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[9] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[12] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[13] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[14] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[15] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
No Suggested Reading articles found!