Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 102101    DOI: 10.1088/1674-1056/20/10/102101
NUCLEAR PHYSICS Prev   Next  

Density functional theory study of NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces

Hu Ming(胡明), Wang Wei-Dan(王巍丹), Zeng Jing(曾晶), and Qin Yu-Xiang(秦玉香)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for W5c. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen O1c site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.
Keywords:  adsorption      Ti doping      NO2-sensing      density functional theory  
Received:  18 May 2011      Revised:  07 June 2011      Accepted manuscript online: 
PACS:  21.60.De (Ab initio methods)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60771019 and 60801018), Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300), Tianjin Natural Science Foundation, China (Grant No. 09JCYBJC01100), and the New Teacher Foundation of the Ministry of Education, China (Grant No. 200800561109).

Cite this article: 

Hu Ming(胡明), Wang Wei-Dan(王巍丹), Zeng Jing(曾晶), and Qin Yu-Xiang(秦玉香) Density functional theory study of NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces 2011 Chin. Phys. B 20 102101

[1] Ma H L, Fan D W and Niu X S 2010 Chin. Phys. B 19 076102
[2] Teoh L G, Hon Y M, Shieh J, Lai W H and Hon M H 2003 Sensors and Actuators B 96 219
[3] Hua Z Q, Wang Y, Wang H Q and Dong L 2010 Sensors and Actuators B 150 588
[4] Yang Y R, Yan X H, Guo Z H and Deng Y X 2008 Chin. Phys. B 17 3433
[5] Jo S E, Kang B G, Heo S, Song S and Kim Y J 2009 Current Appl. Phys. 9 e235
[6] Ghimbeu C M, Lumbreras M, Siadat M and Schoonman J 2010 Mater. Sci. Semicond. Proce. 13 1
[7] Qin Y X, Hu M and Zhang J 2010 Sensors and Actuators B 150 339
[8] Penza M, Martucci C and Cassano G 1998 Sensors and Actuators B 50 52
[9] Chaudhari G N, Bende A M, Bodade A B, Patil S S and Sapkal V S 2006 Sensors and Actuators B 115 297
[10] Hu M, Zhang J, Wang W D and Qin Y X 2011 Chin. Phys. B 20 082101
[11] Guo Y F, Quan X, Lu N, Zhao H M and Chen S 2007 Environ. Sci. Technol. 41 4422
[12] Wang C, Wang F F, Fu X Q, Zhang E D and Xu Z 2011 Chin. Phys. B 20 050701
[13] Le L C, Ma X G, Tang H, Wang Y, Li X and Jiang J J 2009 Acta Phys. Sin. 59 1314 (in Chinese)
[14] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[15] Hohenberg P and Kohn W 1964 J. Phys. Rev. 136 B864
[16] Prades J D, Cirera A, Morante J R, Pruneda J M and Ordejon P 2007 Sensors and Actuators B 2007 126 62
[17] Neyman K M and Illas F 2005 Catalysis Today 105 2
[18] Kotochigova S, Levine Z H, Shirley E L, Stiles M D and Clark C W 1997 Phys. Rev. A 55 191
[19] Ma S Y and Wang S Q 2008 Chin. Phys. B 17 3856
[20] Ying M J, Zhang P and Du X L 2009 Chin. Phys. B 18 275
[21] Imawan C, Solzbacher F, Steffes H and Obermeier E 2000 Sensors and Actuators B 64 193
[22] Xu X L, Chen Z H, Li Y, Chen W K and Li J Q 2009 Surf. Sci. 603 653
[23] Bentmann H, Demkov A A, Gregory R and Zollner S 2008 Phys. Rev. B 78 205302-1
[24] Xue Y B, Tang Z A and Wei G F 2007 Chinese Journal of Sensors and Actuators 20 2364 (in Chinese)
[25] Yang Y 2009 Chin. Phys. B 18 603
[26] Xue Y B and Tang Z A 2009 Sensors and Actuators B 138 108
[27] Sun F Y, Hu M, Sun P, Zhang J and Liu B 2010 J. Nanosci. Nanotechnol. 10 7739
[28] Yin Y Z, Hu M, Feng Y C, Chen P and Liu Z G 2008 Piezoelectrics & Acoustooptics 30 588 (in Chinese)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!