INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A method of generating random bits by using electronic bipolar memristor |
Bin-Bin Yang(杨彬彬)1,2, Nuo Xu(许诺)2, Er-Rui Zhou(周二瑞)1,2, Zhi-Wei Li(李智炜)3, Cheng Li(李成)1,2, Pin-Yun Yi(易品筠)1,2, Liang Fang(方粮)1,2 |
1 Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China; 2 College of Computer, National University of Defense Technology, Changsha 410073, China; 3 College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract The intrinsic stochasticity of resistance switching process is one of the holdblocks for using memristor as a fundamental element in the next-generation nonvolatile memory. However, such a weakness can be used as an asset for generating the random bits, which is valuable in a hardware security system. In this work, a forming-free electronic bipolar Pt/Ti/Ta2O5/Pt memristor is successfully fabricated to investigate the merits of generating random bits in such a device. The resistance switching mechanism of the fabricated device is ascribed to the electric field conducted electrons trapping/de-trapping in the deep-energy-level traps produced by the “oxygen grabbing” process. The stochasticity of the electrons trapping/de-trapping governs the random distribution of the set/reset switching voltages of the device, making a single memristor act as a random bit in which the resistance of the device represents information and the applied voltage pulse serves as the triggering signal. The physical implementation of such a random process provides a method of generating the random bits based on memristors in hardware security applications.
|
Received: 15 September 2019
Revised: 23 January 2020
Accepted manuscript online:
|
PACS:
|
85.35.-p
|
(Nanoelectronic devices)
|
|
77.80.Fm
|
(Switching phenomena)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61832007) and the National Key Research and Development Program of China (Grant No. 2018YFB1003304). |
Corresponding Authors:
Nuo Xu, Liang Fang
E-mail: oun_ux@163.com;lfang@nudt.edu.cn
|
Cite this article:
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮) A method of generating random bits by using electronic bipolar memristor 2020 Chin. Phys. B 29 048505
|
[1] |
Chua L 1971 IEEE Trans. Circuit Theory 18 507
|
[2] |
Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
|
[3] |
Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
|
[4] |
Zhou E R, Fang L and Yang B B 2018 Electronics 7 396
|
[5] |
Zhou E R, Fang L, Liu R L and Tang Z S 2017 Chin. Phys. B 26 118502
|
[6] |
Li Z W, Chen P Y, Xu H and Yu S M 2017 IEEE Trans. Electron Dev. 64 2721
|
[7] |
Liu T Y, Yan T H, Scheuerlein R, et al. 2013 IEEE Int. Solid-State Circuits Conf. 432-434 210-212
|
[8] |
Li Z W, Chen P Y, Liu H J, Li Q J, Xu H and Yu S M 2017 IEEE Trans. Electron Dev. 64 1568
|
[9] |
Zhou J, Yang X J, Wu J J, Zhu X, Fang X D and Huang D 2014 Sci. Chin. 57 1
|
[10] |
Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
|
[11] |
Xu N, Yoon K J, Kim K M, Fang L and Hwang C S 2018 Adv. Electron. Mater. 4 1800189
|
[12] |
Xu N, Fang L, Kim K M and Hwang C S 2019 Phys. Status Solidi RRL 13 1900033
|
[13] |
Kim K M, Xu N, Shao X, Yoon K J, Kim H J, Williams R S and Hwang C S 2019 Phys. Status Solidi RRL 13 1800629
|
[14] |
Zhu X, Yang X J, Wu C Q, Xiao N, Wu J J and Yi X 2013 IEEE Trans. Circ. Systems II: Express Briefs 60 682
|
[15] |
Pickett M D and Williams R S 2012 Nanotechnology 23 215202
|
[16] |
Torrezan A C, Strachan J P, Medeiros-Ribeiro G and Williams R S 2011 Nanotechnology 22 485203
|
[17] |
Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
|
[18] |
Pi S, Lin P and Xia Q F 2013 J. Vac. Sci. Technol. B 31 06FA02
|
[19] |
Xia Q F, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X M, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G and Williams R S 2009 Nano Lett. 9 3640
|
[20] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[21] |
Yang J J, Strachan J P, Xia Q F, Ohlberg D A A, Kuekes P J, Kelley R D, Stickle W F, Stewart D R, Medeiros-Ribeiro G and Williams R S 2010 Adv. Mater. 22 4034
|
[22] |
Zhang H W, Liu L F, Gao B, Qiu Y J, Liu X Y, Lu J, Han R Q, Kang J F and Yu B 2011 Appl. Phys. Lett. 98 042105
|
[23] |
Prakash A, Maikap S, Lai C S, Lee H Y, Chen W S, Chen F T, Kao M J and Tsai M J 2012 Jpn. J. Appl. Phys. 51 04DD06
|
[24] |
Chen Y T, Chang T C, Peng H K, Tseng H C, Huang J J, Yang J B, Chu A K, Young T F and Sze S M 2013 Appl. Phys. Lett. 102 252902
|
[25] |
Gaba S, Sheridan P, Zhou J T, Choi S and Lu W 2013 Nanoscale 5 5872
|
[26] |
Chen A 2015 IEEE Electron Dev. Lett. 36 138
|
[27] |
Liu R, Wu H Q, Pang Y C, Qian H and Yu S M 2015 IEEE Electron Dev. Lett. 36 1380
|
[28] |
Jiang H, Belkin D, Savel'ev S E, Lin S Y, Wang Z R, Li Y N, Joshi S, Midya R, Li C, Rao M Y, Barnell M, Wu Q, Yang J J and Xia Q F 2017 Nat. Commun. 8 882
|
[29] |
Zhang T, Yin M H, Xu C M, Lu X Y, Sun X H, Yang Y C and Huang R 2017 Nanotechnology 28 455202
|
[30] |
Woo K S, Wang Y M, Kim J, Kim Y, Kwon Y J, Yoon J H, Kim W and Hwang C S 2019 Adv. Electron Mater. 5 1800543
|
[31] |
Arumi D, Gomez-Pau A, Manich S, Rodriguez-Montanes R, Gonzalez M B and Campabadal F 2019 IEEE Electron Dev. Lett. 40 341
|
[32] |
Balatti S, Ambrogio S, Wang Z Q and Ielmini D 2015 IEEE J. Emerging Sel. Top. Circ. Systems 5 214
|
[33] |
Yang Y C, Zhang X X, Qin L, Zeng Q B, Qiu X H and Huang R 2017 Nat. Commun. 8 15173
|
[34] |
Yoon J H, Kim K M, Song S J, Seok J Y, Yoon K J, Kwon D E, Park T H, Kwon Y J, Shao X and Hwang C S 2015 Adv. Mater. 27 3811
|
[35] |
Kim K M, Kim G H, Song S J, Seok J Y, Lee M H, Yoon J H and Hwang C S 2010 Nanotechnology 21 305203
|
[36] |
Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
|
[37] |
Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S and Hwang C S 2011 Nanotechnology 22 254010
|
[38] |
Kao K C, Hwang W and Choi S I 1983 Physics Today 36 90
|
[39] |
Di V C, Pacchioni G and Selloni A 2009 J. Phys. Chem. C 113 20543
|
[40] |
Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z S, Hansen J O, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B and Besenbacher F 2008 Science 320 1755
|
[41] |
Mattioli G, Filippone F, Alippi P and Amore Bonapasta A 2008 Phys. Rev. B 78 241201
|
[42] |
Wu X M, Soss S R, Rymaszewski E J and Lu T M 1994 Mater. Chem. Phys. 38 297
|
[43] |
Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|