Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048505    DOI: 10.1088/1674-1056/ab77fd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A method of generating random bits by using electronic bipolar memristor

Bin-Bin Yang(杨彬彬)1,2, Nuo Xu(许诺)2, Er-Rui Zhou(周二瑞)1,2, Zhi-Wei Li(李智炜)3, Cheng Li(李成)1,2, Pin-Yun Yi(易品筠)1,2, Liang Fang(方粮)1,2
1 Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China;
2 College of Computer, National University of Defense Technology, Changsha 410073, China;
3 College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  The intrinsic stochasticity of resistance switching process is one of the holdblocks for using memristor as a fundamental element in the next-generation nonvolatile memory. However, such a weakness can be used as an asset for generating the random bits, which is valuable in a hardware security system. In this work, a forming-free electronic bipolar Pt/Ti/Ta2O5/Pt memristor is successfully fabricated to investigate the merits of generating random bits in such a device. The resistance switching mechanism of the fabricated device is ascribed to the electric field conducted electrons trapping/de-trapping in the deep-energy-level traps produced by the “oxygen grabbing” process. The stochasticity of the electrons trapping/de-trapping governs the random distribution of the set/reset switching voltages of the device, making a single memristor act as a random bit in which the resistance of the device represents information and the applied voltage pulse serves as the triggering signal. The physical implementation of such a random process provides a method of generating the random bits based on memristors in hardware security applications.
Keywords:  memristor      resistance switching      electrons trapping/de-trapping      random bits  
Received:  15 September 2019      Revised:  23 January 2020      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  77.80.Fm (Switching phenomena)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61832007) and the National Key Research and Development Program of China (Grant No. 2018YFB1003304).
Corresponding Authors:  Nuo Xu, Liang Fang     E-mail:  oun_ux@163.com;lfang@nudt.edu.cn

Cite this article: 

Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮) A method of generating random bits by using electronic bipolar memristor 2020 Chin. Phys. B 29 048505

[1] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[4] Zhou E R, Fang L and Yang B B 2018 Electronics 7 396
[5] Zhou E R, Fang L, Liu R L and Tang Z S 2017 Chin. Phys. B 26 118502
[6] Li Z W, Chen P Y, Xu H and Yu S M 2017 IEEE Trans. Electron Dev. 64 2721
[7] Liu T Y, Yan T H, Scheuerlein R, et al. 2013 IEEE Int. Solid-State Circuits Conf. 432-434 210-212
[8] Li Z W, Chen P Y, Liu H J, Li Q J, Xu H and Yu S M 2017 IEEE Trans. Electron Dev. 64 1568
[9] Zhou J, Yang X J, Wu J J, Zhu X, Fang X D and Huang D 2014 Sci. Chin. 57 1
[10] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[11] Xu N, Yoon K J, Kim K M, Fang L and Hwang C S 2018 Adv. Electron. Mater. 4 1800189
[12] Xu N, Fang L, Kim K M and Hwang C S 2019 Phys. Status Solidi RRL 13 1900033
[13] Kim K M, Xu N, Shao X, Yoon K J, Kim H J, Williams R S and Hwang C S 2019 Phys. Status Solidi RRL 13 1800629
[14] Zhu X, Yang X J, Wu C Q, Xiao N, Wu J J and Yi X 2013 IEEE Trans. Circ. Systems II: Express Briefs 60 682
[15] Pickett M D and Williams R S 2012 Nanotechnology 23 215202
[16] Torrezan A C, Strachan J P, Medeiros-Ribeiro G and Williams R S 2011 Nanotechnology 22 485203
[17] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
[18] Pi S, Lin P and Xia Q F 2013 J. Vac. Sci. Technol. B 31 06FA02
[19] Xia Q F, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X M, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G and Williams R S 2009 Nano Lett. 9 3640
[20] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[21] Yang J J, Strachan J P, Xia Q F, Ohlberg D A A, Kuekes P J, Kelley R D, Stickle W F, Stewart D R, Medeiros-Ribeiro G and Williams R S 2010 Adv. Mater. 22 4034
[22] Zhang H W, Liu L F, Gao B, Qiu Y J, Liu X Y, Lu J, Han R Q, Kang J F and Yu B 2011 Appl. Phys. Lett. 98 042105
[23] Prakash A, Maikap S, Lai C S, Lee H Y, Chen W S, Chen F T, Kao M J and Tsai M J 2012 Jpn. J. Appl. Phys. 51 04DD06
[24] Chen Y T, Chang T C, Peng H K, Tseng H C, Huang J J, Yang J B, Chu A K, Young T F and Sze S M 2013 Appl. Phys. Lett. 102 252902
[25] Gaba S, Sheridan P, Zhou J T, Choi S and Lu W 2013 Nanoscale 5 5872
[26] Chen A 2015 IEEE Electron Dev. Lett. 36 138
[27] Liu R, Wu H Q, Pang Y C, Qian H and Yu S M 2015 IEEE Electron Dev. Lett. 36 1380
[28] Jiang H, Belkin D, Savel'ev S E, Lin S Y, Wang Z R, Li Y N, Joshi S, Midya R, Li C, Rao M Y, Barnell M, Wu Q, Yang J J and Xia Q F 2017 Nat. Commun. 8 882
[29] Zhang T, Yin M H, Xu C M, Lu X Y, Sun X H, Yang Y C and Huang R 2017 Nanotechnology 28 455202
[30] Woo K S, Wang Y M, Kim J, Kim Y, Kwon Y J, Yoon J H, Kim W and Hwang C S 2019 Adv. Electron Mater. 5 1800543
[31] Arumi D, Gomez-Pau A, Manich S, Rodriguez-Montanes R, Gonzalez M B and Campabadal F 2019 IEEE Electron Dev. Lett. 40 341
[32] Balatti S, Ambrogio S, Wang Z Q and Ielmini D 2015 IEEE J. Emerging Sel. Top. Circ. Systems 5 214
[33] Yang Y C, Zhang X X, Qin L, Zeng Q B, Qiu X H and Huang R 2017 Nat. Commun. 8 15173
[34] Yoon J H, Kim K M, Song S J, Seok J Y, Yoon K J, Kwon D E, Park T H, Kwon Y J, Shao X and Hwang C S 2015 Adv. Mater. 27 3811
[35] Kim K M, Kim G H, Song S J, Seok J Y, Lee M H, Yoon J H and Hwang C S 2010 Nanotechnology 21 305203
[36] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[37] Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S and Hwang C S 2011 Nanotechnology 22 254010
[38] Kao K C, Hwang W and Choi S I 1983 Physics Today 36 90
[39] Di V C, Pacchioni G and Selloni A 2009 J. Phys. Chem. C 113 20543
[40] Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z S, Hansen J O, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B and Besenbacher F 2008 Science 320 1755
[41] Mattioli G, Filippone F, Alippi P and Amore Bonapasta A 2008 Phys. Rev. B 78 241201
[42] Wu X M, Soss S R, Rymaszewski E J and Lu T M 1994 Mater. Chem. Phys. 38 297
[43] Chen C, Song C, Yang J, Zeng F and Pan F 2012 Appl. Phys. Lett. 100 253509
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[8] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!