|
|
Epitaxial growth and air-stability of monolayer Cu2Te |
K Qian(钱凯)1, L Gao(高蕾)1, H Li(李航)1, S Zhang(张帅)1, J H Yan(严佳浩)1, C Liu(刘晨)2, J O Wang(王嘉鸥)2, T Qian(钱天)1,3, H Ding(丁洪)1,3, Y Y Zhang(张余洋)1,3, X Lin(林晓)1,3, S X Du(杜世萱)1,3, H-J Gao(高鸿钧)1,3 |
1 Institute of Physics&University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract A new two-dimensional atomic crystal, monolayer cuprous telluride (Cu2Te) has been fabricated on a graphene-SiC(0001) substrate by molecular beam epitaxy (MBE). The low-energy electron diffraction (LEED) characterization shows that the monolayer Cu2Te forms a √3×√3 superstructure with respect to the graphene substrate. The atomic structure of the monolayer Cu2Te is investigated through a combination of scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. The stoichiometry of the Cu2Te sample is verified by x-ray photoelectron spectroscopy (XPS) measurement. The angle-resolved photoemission spectroscopy (ARPES) data present the electronic band structure of the sample, which is in good agreement with the calculated results. Furthermore, air-exposure experiments reveal the chemical stability of the monolayer Cu2Te. The fabrication of this new 2D material with a particular structure may bring new physical properties for future applications.
|
Received: 01 November 2019
Revised: 08 November 2019
Accepted manuscript online:
|
PACS:
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
Corresponding Authors:
X Lin, S X Du
E-mail: sxdu@iphy.ac.cn;xlin@ucas.ac.cn
|
Cite this article:
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧) Epitaxial growth and air-stability of monolayer Cu2Te 2020 Chin. Phys. B 29 018104
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N 2018 Nat. Nanotech. 13 246
|
[3] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[4] |
Hao Y, Wang L, Liu Y, Chen H, Wang X, Tan C, Nie S, Suk J W, Jiang T, Liang T, Xiao J, Ye W, Dean C R, Yakobson B I, McCarty K F, Kim P, Hone J, Colombo L and Ruoff R S 2016 Nat. Nanotech. 11 426
|
[5] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
|
[6] |
Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931
|
[7] |
R Xu A H, Rosenbaum T F, Saboungi M L and Littlewood P B 1997 Nature 390 57
|
[8] |
Zhang W, Yu R, Feng W X, Yao Y G, Weng H M, Dai X and Fang Z 2011 Phys. Rev. Lett. 106 156808
|
[9] |
Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
|
[10] |
Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[11] |
Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotech. 7 494
|
[12] |
Rivera P, Seyler K L, Yu H Y, Schaibley J R, Yan J Q, Mandrus D G, Yao W and Xu X D 2016 Science 351 688
|
[13] |
Park D, Ju H, Oh T and Kim J 2018 Sci. Rep. 8 18082
|
[14] |
Cheng L, Wang M, Pei C, Liu B, Zhao H, Zhao H, Zhang C, Yang H and Liu S 2016 RSC. Adv. 6 79612
|
[15] |
Ballikaya S, Chi H, Salvador J R and Uher C 2013 J. Mate. Chem. A 1 12478
|
[16] |
Zhang Y, Wang Y, Xi L, Qiu R, Shi X, Zhang P and Zhang W 2014 J. Chem. Phys. 140 074702
|
[17] |
Han C, Bai Y, Sun Q, Zhang S, Li Z, Wang L and Dou S 2016 Adv. Sci. (Weinh) 3 1500350
|
[18] |
Yun J H, Kim K H, Lee D Y and Ahn B T 2003 Sol. Energy. Mat. Sol. C 75 203
|
[19] |
Woodbury H H and Aven M 1968 J. Appl. Phys. 39 5485
|
[20] |
Lv B, Di X, Li W, Feng L H, Lei Z, Zhang J Q, Wu L L, Cai Y P, Li B and Sun Z 2009 Jpn. J. Appl. Phys. 48 085501
|
[21] |
Nguyen M C, Choi J H, Zhao X, Wang C Z, Zhang Z and Ho K M 2013 Phys. Rev. Lett. 111 165502
|
[22] |
Nowotny Z M 1946 Phys. Rep. 37 40
|
[23] |
Da Silva J L F, Wei S H, Zhou J and Wu X Z 2007 Appl. Phys. Lett. 91 091902
|
[24] |
Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys: Condens. Matter 25 095002
|
[25] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[26] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[27] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[28] |
Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
|
[29] |
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
|
[30] |
Wu D, Zhang Q and Tao M 2006 Phys. Rev. B 73 235206
|
[31] |
Riedl C, Coletti C, Iwasaki T, Zakharov A A and Starke U 2009 Phys. Rev. Lett. 103 246804
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|