Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 126201    DOI: 10.1088/1674-1056/ab4f61
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110]

Xueyang Zhang(张学阳)1,2, Kun Wang(王昆)2, Jun Chen(陈军)2,3, Wangyu Hu(胡望宇)4, Wenjun Zhu(祝文军)5, Shifang Xiao(肖时芳)1, Huiqiu Deng(邓辉球)1, Mengqiu Cai(蔡孟秋)1
1 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 Center for Applied Physics and Technology, Peking University, Beijing 100087, China;
4 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
5 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Mianyang 621900, China
Abstract  Many of our previous studies have discussed the shock response of symmetrical grain boundaries in iron bicrystals. In this paper, the molecular dynamics simulation of an iron bicrystal containing Σ3[110] asymmetry tilt grain boundary (ATGB) under shock-loading is performed. We find that the shock response of asymmetric grain boundaries is quite different from that of symmetric grain boundaries. Especially, our simulation proves that shock can induce migration of asymmetric grain boundary in iron. We also find that the shape and local structure of grain boundary (GB) would not be changed during shock-induced migration of Σ3[110] ATGB, while the phase transformation near the GB could affect migration of GB. The most important discovery is that the shock-induced shear stress difference between two sides of GB is the key factor leading to GB migration. Our simulation involves a variety of piston velocities, and the migration of GB seems to be less sensitive to the piston velocity. Finally, the kinetics of GB migration at lattice level is discussed. Our work firstly reports the simulation of shock-induced grain boundary migration in iron. It is of great significance to the theory of GB migration and material engineering.
Keywords:  shock-loading      grain boundary migration      iron      phase transition  
Received:  06 September 2019      Revised:  17 October 2019      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  47.40.Nm (Shock wave interactions and shock effects)  
Fund: Project supported by the Fundamental Research for the Central Universities of China, the National Key Laboratory Project of Shock Wave and Detonation Physics of China, the Science and Technology Foundation of National Key Laboratory of Shock Wave and Detonation Physics of China, the National Key R&D Program of China (Grant No. 2017YFB0202303), the National Natural Science Foundation of China (Grant Nos. 51871094, 51871095, 51571088, NSFC-NSAF U1530151, and U1830138), the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ2036), and the Science Challenge Project of China (Grant No. TZ2016001).
Corresponding Authors:  Jun Chen, Wangyu Hu     E-mail:  jun_chen@iapcm.ac.cn;wyuhu@hnu.edu.cn

Cite this article: 

Xueyang Zhang(张学阳), Kun Wang(王昆), Jun Chen(陈军), Wangyu Hu(胡望宇), Wenjun Zhu(祝文军), Shifang Xiao(肖时芳), Huiqiu Deng(邓辉球), Mengqiu Cai(蔡孟秋) Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110] 2019 Chin. Phys. B 28 126201

[35] Zhang X Y, Chen J, Hu W Y, Zhu W J, Xiao S F, Deng H Q and Cai M Q 2019 J. Appl. Phys. 126 045901
[1] Li Y H, Wang L, Li B, E J C, Zhao F P, Zhu J and Luo S N 2015 J. Chem. Phys. 142 054706
[36] Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S and Urbassek H M 2014 Phys. Rev. B 89 140102
[2] Legros M, Gianola D S and Hemker K J 2008 Acta Mater. 56 3380
[37] Gunkelmann N, Tramontina D R, Bringa E M and Urbassek H M 2014 New J. Phys. 16 093032
[3] Rajabzadeh A, Mompiou F, Legros M and Combe N 2013 Phys. Rev. Lett. 110 265507
[38] Luo S N, Germann T C, Tonks D L and An Q 2010 J. Appl. Phys. 108 093526
[4] Cahn J W, Mishin Y and Suzuki A 2006 Acta Mater. 54 4953
[39] Hahn E N, Fensin S J, Germann T C and Meyers M A 2016 Scr. Mater. 116 108
[5] Winning M, Gottstein G and Shvindlerman L S 2001 Acta Mater. 49 211
[40] Zong H X, Ding X D, Lookman T and Sun J 2016 Acta Mater. 115 1
[6] Winning M, Gottstein G and Shvindlerman L S 2002 Acta Mater. 50 353
[41] Plimpton S 1995 Comput. Mater. Sci. 4 361
[7] Zhang H, Upmanyu M and Srolovitz D J 2005 Acta Mater. 53 79
[42] Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
[8] Sursaeva V G, Straumal B B, Gornakova A S, Shvindlerman L S and Gottstein G 2008 Acta Mater. 56 2728
[43] Stukowski A 2012 Model. Simul. Mater. Sc. 20 45021
[9] Li N, Wang J, Wang Y Q, Serruys Y, Nastasi M and Misra A 2013 J. Appl. Phys. 113 023508
[44] Thompson A P, Plimpton S J and Mattson W 2009 J. Chem. Phys. 131 154107
[10] Holm E A and Foiles S M 2010 Science 328 1138
[45] Luo S N, An Q, Germann T C and Han L B 2009 J. Appl. Phys. 106 013502
[11] Trautt Z T, Adl, A, Karma A and Mishin Y 2012 Acta Mater. 60 6528
[12] Molodov D A, Gorkaya T and Gottstein G 2011 J. Mater. Sci. 46 4318
[13] Long X J, Wang L, Li B, Zhu J and Luo S N 2017 J. Appl. Phys. 121 045904
[14] Bisht A, Ray N, Jagadeesh G and Suwas S 2017 J. Mater. Res. 32 1484
[15] Wang K, Xiao S, Deng H, Zhu W and Hu W 2014 Int. J. Plast. 59 180
[16] Ma W, Zhu W and Jing F 2010 Appl. Phys. Lett. 97 121903
[17] Wang K, Zhu W, Xiao S, Chen K, Deng H and Hu W 2015 Int. J. Plast. 71 218
[18] Amadou N, de Resseguier T, Dragon A and Brambrink E 2018 Phys. Rev. B 98
[19] Bancroft D, Peterson E L and Minshall S 1956 J. Appl. Phys. 27 291
[20] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E and Eggert J H 2005 Phys. Rev. Lett. 95 075501
[21] Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L and Kadau K 2005 Phys. Rev. Lett. 95 075502
[22] Hawreliak J, Colvin J D, Eggert J H, Kalantar D H, Lorenzana H E, St, Ouml J S, lken, Davies H M, Germann T C and Holian B L 2006 Phys. Rev. B 74 184107
[23] Kadau K, Germann T C, Lomdahl P S and Holian B L 2005 Phys. Rev. B 72 064120
[24] Chen Z, Ding J, Zhou F, Tang C, Ye Z and Wu X 1988 Chin. Phys. Lett. 5 313
[25] Li J, Wu Q, Yu J D, Tan Y, Yao S L, Xue T and Jing K 2017 Acta Phys. Sin. 66 146201 (in Chinese)
[26] Ma W, Zhu W J, Zhang Y L and Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese)
[27] Tsurekawa S, Ueda T, Ichikawa K, Nakashima H, Yoshitomi Y and Yoshinaga H 1996 Mater. Sci. Forum 204-206 221
[28] Yu Z S and Shewmon P G 1982 Metall. Trans. A 13 1567
[29] Wejrzanowski T, Spychalski M, Pielaszek R and Kurzydlowski K J 2007 Solid State Phenom. 129 145
[30] Teus S M, Mazanko V F, Olive J M and Gavriljuk V G 2014 Acta Mater. 69 105
[31] Jian Y, Yi W, Yan X, Hou H and Jing T W 2018 Comput. Mater. Sci. 148 141
[32] Gunkelmann N, Bringa E M, Kang K, Ackl, G J, Ruestes C J and Urbassek H M 2012 Phys. Rev. B 86 144111
[33] Wang K, Chen J, Zhang X and Zhu W 2017 J. Appl. Phys. 122 105107
[34] Zhang X, Wang K, Zhu W, Chen J, Cai M, Xiao S, Deng H and Hu W 2018 J. Appl. Phys. 123 045105
[35] Zhang X Y, Chen J, Hu W Y, Zhu W J, Xiao S F, Deng H Q and Cai M Q 2019 J. Appl. Phys. 126 045901
[36] Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S and Urbassek H M 2014 Phys. Rev. B 89 140102
[37] Gunkelmann N, Tramontina D R, Bringa E M and Urbassek H M 2014 New J. Phys. 16 093032
[38] Luo S N, Germann T C, Tonks D L and An Q 2010 J. Appl. Phys. 108 093526
[39] Hahn E N, Fensin S J, Germann T C and Meyers M A 2016 Scr. Mater. 116 108
[40] Zong H X, Ding X D, Lookman T and Sun J 2016 Acta Mater. 115 1
[41] Plimpton S 1995 Comput. Mater. Sci. 4 361
[42] Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
[43] Stukowski A 2012 Model. Simul. Mater. Sc. 20 45021
[44] Thompson A P, Plimpton S J and Mattson W 2009 J. Chem. Phys. 131 154107
[45] Luo S N, An Q, Germann T C and Han L B 2009 J. Appl. Phys. 106 013502
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[7] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[8] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[11] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[12] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[15] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
No Suggested Reading articles found!