CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110] |
Xueyang Zhang(张学阳)1,2, Kun Wang(王昆)2, Jun Chen(陈军)2,3, Wangyu Hu(胡望宇)4, Wenjun Zhu(祝文军)5, Shifang Xiao(肖时芳)1, Huiqiu Deng(邓辉球)1, Mengqiu Cai(蔡孟秋)1 |
1 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 Center for Applied Physics and Technology, Peking University, Beijing 100087, China; 4 College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 5 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Mianyang 621900, China |
|
|
Abstract Many of our previous studies have discussed the shock response of symmetrical grain boundaries in iron bicrystals. In this paper, the molecular dynamics simulation of an iron bicrystal containing Σ3[110] asymmetry tilt grain boundary (ATGB) under shock-loading is performed. We find that the shock response of asymmetric grain boundaries is quite different from that of symmetric grain boundaries. Especially, our simulation proves that shock can induce migration of asymmetric grain boundary in iron. We also find that the shape and local structure of grain boundary (GB) would not be changed during shock-induced migration of Σ3[110] ATGB, while the phase transformation near the GB could affect migration of GB. The most important discovery is that the shock-induced shear stress difference between two sides of GB is the key factor leading to GB migration. Our simulation involves a variety of piston velocities, and the migration of GB seems to be less sensitive to the piston velocity. Finally, the kinetics of GB migration at lattice level is discussed. Our work firstly reports the simulation of shock-induced grain boundary migration in iron. It is of great significance to the theory of GB migration and material engineering.
|
Received: 06 September 2019
Revised: 17 October 2019
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
47.40.Nm
|
(Shock wave interactions and shock effects)
|
|
Fund: Project supported by the Fundamental Research for the Central Universities of China, the National Key Laboratory Project of Shock Wave and Detonation Physics of China, the Science and Technology Foundation of National Key Laboratory of Shock Wave and Detonation Physics of China, the National Key R&D Program of China (Grant No. 2017YFB0202303), the National Natural Science Foundation of China (Grant Nos. 51871094, 51871095, 51571088, NSFC-NSAF U1530151, and U1830138), the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ2036), and the Science Challenge Project of China (Grant No. TZ2016001). |
Corresponding Authors:
Jun Chen, Wangyu Hu
E-mail: jun_chen@iapcm.ac.cn;wyuhu@hnu.edu.cn
|
Cite this article:
Xueyang Zhang(张学阳), Kun Wang(王昆), Jun Chen(陈军), Wangyu Hu(胡望宇), Wenjun Zhu(祝文军), Shifang Xiao(肖时芳), Huiqiu Deng(邓辉球), Mengqiu Cai(蔡孟秋) Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110] 2019 Chin. Phys. B 28 126201
|
[35] |
Zhang X Y, Chen J, Hu W Y, Zhu W J, Xiao S F, Deng H Q and Cai M Q 2019 J. Appl. Phys. 126 045901
|
[1] |
Li Y H, Wang L, Li B, E J C, Zhao F P, Zhu J and Luo S N 2015 J. Chem. Phys. 142 054706
|
[36] |
Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S and Urbassek H M 2014 Phys. Rev. B 89 140102
|
[2] |
Legros M, Gianola D S and Hemker K J 2008 Acta Mater. 56 3380
|
[37] |
Gunkelmann N, Tramontina D R, Bringa E M and Urbassek H M 2014 New J. Phys. 16 093032
|
[3] |
Rajabzadeh A, Mompiou F, Legros M and Combe N 2013 Phys. Rev. Lett. 110 265507
|
[38] |
Luo S N, Germann T C, Tonks D L and An Q 2010 J. Appl. Phys. 108 093526
|
[4] |
Cahn J W, Mishin Y and Suzuki A 2006 Acta Mater. 54 4953
|
[39] |
Hahn E N, Fensin S J, Germann T C and Meyers M A 2016 Scr. Mater. 116 108
|
[5] |
Winning M, Gottstein G and Shvindlerman L S 2001 Acta Mater. 49 211
|
[40] |
Zong H X, Ding X D, Lookman T and Sun J 2016 Acta Mater. 115 1
|
[6] |
Winning M, Gottstein G and Shvindlerman L S 2002 Acta Mater. 50 353
|
[41] |
Plimpton S 1995 Comput. Mater. Sci. 4 361
|
[7] |
Zhang H, Upmanyu M and Srolovitz D J 2005 Acta Mater. 53 79
|
[42] |
Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
|
[8] |
Sursaeva V G, Straumal B B, Gornakova A S, Shvindlerman L S and Gottstein G 2008 Acta Mater. 56 2728
|
[43] |
Stukowski A 2012 Model. Simul. Mater. Sc. 20 45021
|
[9] |
Li N, Wang J, Wang Y Q, Serruys Y, Nastasi M and Misra A 2013 J. Appl. Phys. 113 023508
|
[44] |
Thompson A P, Plimpton S J and Mattson W 2009 J. Chem. Phys. 131 154107
|
[10] |
Holm E A and Foiles S M 2010 Science 328 1138
|
[45] |
Luo S N, An Q, Germann T C and Han L B 2009 J. Appl. Phys. 106 013502
|
[11] |
Trautt Z T, Adl, A, Karma A and Mishin Y 2012 Acta Mater. 60 6528
|
[12] |
Molodov D A, Gorkaya T and Gottstein G 2011 J. Mater. Sci. 46 4318
|
[13] |
Long X J, Wang L, Li B, Zhu J and Luo S N 2017 J. Appl. Phys. 121 045904
|
[14] |
Bisht A, Ray N, Jagadeesh G and Suwas S 2017 J. Mater. Res. 32 1484
|
[15] |
Wang K, Xiao S, Deng H, Zhu W and Hu W 2014 Int. J. Plast. 59 180
|
[16] |
Ma W, Zhu W and Jing F 2010 Appl. Phys. Lett. 97 121903
|
[17] |
Wang K, Zhu W, Xiao S, Chen K, Deng H and Hu W 2015 Int. J. Plast. 71 218
|
[18] |
Amadou N, de Resseguier T, Dragon A and Brambrink E 2018 Phys. Rev. B 98
|
[19] |
Bancroft D, Peterson E L and Minshall S 1956 J. Appl. Phys. 27 291
|
[20] |
Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E and Eggert J H 2005 Phys. Rev. Lett. 95 075501
|
[21] |
Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L and Kadau K 2005 Phys. Rev. Lett. 95 075502
|
[22] |
Hawreliak J, Colvin J D, Eggert J H, Kalantar D H, Lorenzana H E, St, Ouml J S, lken, Davies H M, Germann T C and Holian B L 2006 Phys. Rev. B 74 184107
|
[23] |
Kadau K, Germann T C, Lomdahl P S and Holian B L 2005 Phys. Rev. B 72 064120
|
[24] |
Chen Z, Ding J, Zhou F, Tang C, Ye Z and Wu X 1988 Chin. Phys. Lett. 5 313
|
[25] |
Li J, Wu Q, Yu J D, Tan Y, Yao S L, Xue T and Jing K 2017 Acta Phys. Sin. 66 146201 (in Chinese)
|
[26] |
Ma W, Zhu W J, Zhang Y L and Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese)
|
[27] |
Tsurekawa S, Ueda T, Ichikawa K, Nakashima H, Yoshitomi Y and Yoshinaga H 1996 Mater. Sci. Forum 204-206 221
|
[28] |
Yu Z S and Shewmon P G 1982 Metall. Trans. A 13 1567
|
[29] |
Wejrzanowski T, Spychalski M, Pielaszek R and Kurzydlowski K J 2007 Solid State Phenom. 129 145
|
[30] |
Teus S M, Mazanko V F, Olive J M and Gavriljuk V G 2014 Acta Mater. 69 105
|
[31] |
Jian Y, Yi W, Yan X, Hou H and Jing T W 2018 Comput. Mater. Sci. 148 141
|
[32] |
Gunkelmann N, Bringa E M, Kang K, Ackl, G J, Ruestes C J and Urbassek H M 2012 Phys. Rev. B 86 144111
|
[33] |
Wang K, Chen J, Zhang X and Zhu W 2017 J. Appl. Phys. 122 105107
|
[34] |
Zhang X, Wang K, Zhu W, Chen J, Cai M, Xiao S, Deng H and Hu W 2018 J. Appl. Phys. 123 045105
|
[35] |
Zhang X Y, Chen J, Hu W Y, Zhu W J, Xiao S F, Deng H Q and Cai M Q 2019 J. Appl. Phys. 126 045901
|
[36] |
Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S and Urbassek H M 2014 Phys. Rev. B 89 140102
|
[37] |
Gunkelmann N, Tramontina D R, Bringa E M and Urbassek H M 2014 New J. Phys. 16 093032
|
[38] |
Luo S N, Germann T C, Tonks D L and An Q 2010 J. Appl. Phys. 108 093526
|
[39] |
Hahn E N, Fensin S J, Germann T C and Meyers M A 2016 Scr. Mater. 116 108
|
[40] |
Zong H X, Ding X D, Lookman T and Sun J 2016 Acta Mater. 115 1
|
[41] |
Plimpton S 1995 Comput. Mater. Sci. 4 361
|
[42] |
Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
|
[43] |
Stukowski A 2012 Model. Simul. Mater. Sc. 20 45021
|
[44] |
Thompson A P, Plimpton S J and Mattson W 2009 J. Chem. Phys. 131 154107
|
[45] |
Luo S N, An Q, Germann T C and Han L B 2009 J. Appl. Phys. 106 013502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|