Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 126101    DOI: 10.1088/1674-1056/ab4e82
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Metabasin dynamics of supercooled polymer melt

Jian Li(李健)1, Bo-Kai Zhang(张博凯)2
1 Department of Physics and Electronic Engineering, Heze University, Heze 274015, China;
2 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  We employ molecular dynamic simulation to investigate metabasin dynamics for supercooled polymer melt. We find that, in a small system, the α-relaxation process is composed of a few crossing events that the monomers hops from one metabasin to another. Each crossing event is very rapid and involves a democratic movement of many particles, whereas such collective motion is not string-like. Evaluation on the contributions of metabasin exploration and democratic movement shows that the structural relaxation is mostly governed by the latter. Our calculated results show that the metabasin-metabasin transitions are not the main reason of spatially dynamical heterogeneity. It is different from the binary Lennard-Jones mixture model in which the metabasin-metabasin transitions are relevant for the spatially dynamical heterogeneity.
Keywords:  metabasin dynamics      distance matrix      democratic movement      dynamic heterogeneity  
Received:  28 August 2019      Revised:  13 October 2019      Accepted manuscript online: 
PACS:  61.43.Fs (Glasses)  
  64.70.kj (Glasses)  
  64.70.km (Polymers)  
  64.70.pj (Polymers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804085) and the Doctoral Foundation of Heze University, China (Grant No. XY18BS13).
Corresponding Authors:  Jian Li     E-mail:  lijian2006400457@126.com

Cite this article: 

Jian Li(李健), Bo-Kai Zhang(张博凯) Metabasin dynamics of supercooled polymer melt 2019 Chin. Phys. B 28 126101

[35] Wan W B, Lv H H, Merlitz H and Wu C X 2016 Chin. Phys. B 25 106101
[1] Angell C A 1991 J. Non-Cryst. Solids 131-133 13
[36] Appignanesi G A and Montani R A 2004 J. Non-Cryst. Solids 337 109
[2] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99
[3] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[4] Wang Y J 2017 Chin. Phys. B 26 014503
[5] Ediger M D, Angell C A and Nagel S R 1996 J. Phys. Chem. 100 13200
[6] Götze W 1999 J. Phys.: Condens. Matter 11 A1
[7] Ngai K L 2002 Proceedings of the Fourth International Discussion Meeting on Relaxations in Complex Systems (J. Non-Cryst. Solids 2002 307)
[8] Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139
[9] Schmidt-Rohr K and Spiess H W 1991 Phys. Rev. Lett. 66 3020
[10] Donati C, Douglas J F, Kob W, Plimpton S J, Poole P H and Glotzer S C 1998 Phys. Rev. Lett. 80 2338
[11] Richert R 2002 J. Phys.: Condens. Matter 14 R703
[12] Weeks E R, Crocker J C, Levitt A C, Schofield A and Weitz D A 2000 Science 287 627
[13] Kegel W K and Blaaderen A V 2000 Science 287 290
[14] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[15] Butler S and Harrowell P 1991 J. Chem. Phys. 95 4454
[16] Cicerone M T, Blackburn F R and Ediger M D 1995 J. Chem. Phys. 102 471
[17] Debenedetti P G, Truskett T M and Lewis C P 2001 Adv. Chem. Eng. 28 21
[18] Sciortino F 2005 J. Stat. Mech. P05015
[19] Monthus C and Bouchaud J P 1996 J. Phys. A 29 3847
[20] Doliwa B and Heuer A 2003 Phys. Rev. E 67 031506
[21] Vogel M, Doliwa B, Heuer A and Glotzer S C 2004 J. Chem. Phys. 120 4404
[22] Appignanesi G A, Fris J A R, Montani R A and Kob W 2006 Phys. Rev. Lett. 96 057801
[23] Alarcón L M, Frechero M A, Montani R A and Appignanesi G A 2009 Phys. Rev. E 80 026127
[24] Fris J A R, Appignanesi G A, Nave E L and Sciortino F 2007 Phys. Rev. E 75 041501
[25] Fris J A R, Appignanesi G A and Weeks E R 2011 Phys. Rev. Lett. 107 065704
[26] Li S J, Qian H J and Lu Z Y 2019 Soft Matter 15 4476
[27] Hsu H P and Kremer K 2019 J. Chem. Phys. 150 091101
[28] Bennemann C, Paul W, Binder K and Dünweg B 1998 Phys. Rev. E 57 843
[29] Gebremichael Y, Schro.der T B, Starr F W and Glotzer S C 2001 Phys. Rev. E 64 051503
[30] Binder K, Baschnagel J and Paul W 2003 Prog. Polym. Sci. 28 115
[31] Aichele M, Chong S H, Baschnagel J and Fuchs M 2004 Phys. Rev. E 69 061801
[32] Chong S H, Aichele M, Meyer H, Fuchs M and Baschnagel J 2007 Phys. Rev. E 76 051806
[33] Jiang Z B, Peng M J, Li L L, Zhou D S, Wang R and Xue G 2015 Chin. Phys. B 24 076801
[34] Kremer K and Grest G S 1990 J. Chem. Phys. 92 5057
[35] Wan W B, Lv H H, Merlitz H and Wu C X 2016 Chin. Phys. B 25 106101
[36] Appignanesi G A and Montani R A 2004 J. Non-Cryst. Solids 337 109
[1] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[2] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[3] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[4] Thermal conductivity of systems with a gap in the phonon spectrum
E Salamatov. Chin. Phys. B, 2018, 27(7): 076502.
[5] Granular packing as model glass formers
Yujie Wang(王宇杰). Chin. Phys. B, 2017, 26(1): 014503.
[6] Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强). Chin. Phys. B, 2016, 25(11): 116101.
[7] Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass
Wang Tie-Shan (王铁山), Duan Bing-Huang (段丙皇), Tian Feng (田丰), Peng Hai-Bo (彭海波), Chen Liang (陈亮), Zhang Li-Min (张利民), Yuan Wei (袁伟). Chin. Phys. B, 2015, 24(7): 076102.
[8] XPS and Raman studies of electron irradiated sodium silicate glass
Chen Liang (陈亮), Wang Tie-Shan (王铁山), Zhang Gen-Fa (张根发), Yang Kun-Jie (杨坤杰), Peng Hai-Bo (彭海波), Zhang Li-Min (张利民). Chin. Phys. B, 2013, 22(12): 126101.
[9] Optical planar waveguides in Yb3+-doped phosphate glasses produced by He+ ion implantation
Liu Chun-Xiao(刘春晓), Li Wei-Nan(李玮楠), Wei Wei(韦玮), and Peng Bo(彭波) . Chin. Phys. B, 2012, 21(7): 074211.
[10] Preferred clusters in metallic glasses
Yang Liang(杨亮) and Guo Gu-Qing(郭古青). Chin. Phys. B, 2010, 19(12): 126101.
[11] Femtosecond laser-induced microstructure in Foturan glass
Sun Hai-Yi(孙海轶), Luo Fang-Fang(骆芳芳), He Fei(何飞), Liao Yang(廖洋), and Xu Jian(徐剑). Chin. Phys. B, 2010, 19(5): 054210.
[12] Solving the initial condition of the string relaxation equation of the string model for glass transition: part-I
Zhang Jin-Lu(张晋鲁), Wang Li-Na(王丽娜), Zhou Heng-Wei(周恒为), Zhang Li-Li(张丽丽), Zhao Xing-Yu(赵兴宇), and Huang Yi-Neng(黄以能). Chin. Phys. B, 2010, 19(5): 056403.
[13] Boson peak in Sm-Al-Co ternary metallic glasses and its possible structural origin
Liu Hui-Mei(刘慧美), Lu Cheng-Liang(陆成亮), Wang Ke-Feng(王克锋), Liu Jun-Ming(刘俊明), Wang Qing(王清), and Dong Chuang(董闯) . Chin. Phys. B, 2010, 19(1): 017102.
[14] The increasing of localized free volume in bulk metallic glass under uniaxial compression
Deng Yu-Fu(邓玉福), Yang Fei(杨飞), Yang Jian-Lin(杨建林), and Zhang Wei(张微). Chin. Phys. B, 2007, 16(7): 2051-2055.
[15] Femtosecond laser-induced transient grating in CeO2-doped 75TeO2-20Nb2O5-5ZnO glass
Zhang Shi-An (张诗按), Sun Zhen-Rong (孙真荣), Yang Xi-Hua (杨希华), Wang Zu-Geng (王祖赓), Lin Jian (林健), Huang Wen-Hai (黄文旵). Chin. Phys. B, 2005, 14(8): 1578-1580.
No Suggested Reading articles found!